• 제목/요약/키워드: Item-based recommendation

검색결과 198건 처리시간 0.026초

분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천 (Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries)

  • 장영진;원종관;이채록
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.69-88
    • /
    • 2022
  • 최근 코로나19 팬데믹으로 인해 전 세계 경제와 외교 상황에 급격한 변화가 일어나고 있으며, 수출 의존도가 높은 한국은 이러한 변화에 큰 영향을 받고 있다. 본 연구에서는 기업의 수출전략 수립 및 의사결정 지원을 위해 차년도 수출액 예측 모델을 구축하고, 모델의 예측 결과를 바탕으로 수출 유망국가 추천 방식을 제안한다. 본 연구에서는 모델이 다양한 정보를 학습할 수 있도록 국가별, 품목별, 거시경제 변수 등 선행 연구에서 중요하게 사용된 변수를 다방면으로 수집하였다. 수집한 데이터를 분석한 결과, 국가와 품목에 따라서 수출액의 분포가 매우 비대칭적인 것을 확인할 수 있었다. 따라서, 모델의 예측 성능을 향상시키고 설명력을 확보하기 위해서 분리학습 방식을 사용하였다. 분리학습은 전체 데이터를 동질적인 하위 그룹으로 분리하고 개별 모델을 구축하는 방식으로, 본 연구에서는 수출액을 기준으로 5개 구간으로 데이터를 분리하였다. 모델 학습 과정에서 구간별 특성을 반영하여 구간1부터 구간4까지는 LightGBM을 사용하고, 구간5는 지수이동평균을 사용하였으며 이를 통해 모델의 예측 성능을 향상시킬 수 있었다. 모델의 설명력 확보를 위해서 추가로 구간별 모델의 SHAP-value를 계산하고 중요도가 높은 변수를 제시했다. 또한, 본 연구에서는 예측 모델을 기반으로 2단계 수출 유망국가 추천 방식을 제안했다. 효율적인 수출 전략 수립을 위해서 BCG 매트릭스와 국가별 점수 산출 방식을 사용하였고, 품목별 유망 국가 순위와 수출 관련 주요 정보들을 제공하였다. 본 연구는 다양한 정보를 학습한 머신러닝 모델로 여러 국가와 품목에 대한 예측을 실시하고, 이 과정에서 분리학습 방식으로 예측 성능을 향상시켰다는 점에서 의의가 있다. 또한, 현재 무역 관련 서비스들이 과거 데이터에 기반한 정보를 제공하고 있음을 고려할 때, 본 연구에서 제안한 예측 모델과 유망국가 추천 방식은 기업들의 미래 수출 전략 수립 및 동향 파악에 유용하게 사용될 수 있을 것으로 기대된다.

SVM과 협업적 필터링 기법을 이용한 소비자 맞춤형 시장 분석 기법 설계 (A Design of Customized Market Analysis Scheme Using SVM and Collaboration Filtering Scheme)

  • 정은희;이병관
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.609-616
    • /
    • 2016
  • 본 논문에서는 SVM과 협업적 필터링을 이용한 소비자 맞춤형 시장 분석 기법을 제안하였다. 제안하는 소비자 맞춤형 시장 분석 기법은 DC(Data Classification) 모듈, ICF(Improved Collaborative Filtering) 모듈, 그리고 CMA(Customized Market Analysis) 모듈로 구성된다. DC 모듈은 SVM을 이용하여 온 오프라인 쇼핑몰과 전통시장의 특성을 가격, 품질평가, 주력상품으로 분류하고, ICF 모듈은 나이 가중치와 직업 가중치를 추가한 유사도를 생성하고, 사용자들간의 구매 아이템에 대한 유사도를 이용하여 네트워크를 생성하고, 이웃 노드의 추천 리스트를 생성한다. 그리고 CMA 모듈은 DC모듈의 데이터 분류 결과와 ICF 모듈의 추천 리스트를 이용하여 사용자 맞춤형 시장 분석 결과를 제공한다. 제안된 사용자 맞춤형 추천리스트와 기존의 사용자기반 추천 리스트를 비교한 결과, 기존의 협업적 필터링기법을 이용한 추천리스트의 경우, precision는 0.53, recall은 0.56, F-measure은 0,57인데 반해, 제안하는 소비자 맞춤형 추천리스트는 precision이 0.78, recall은 0.85, 그리고 F-measure은 0.81로 나타났다. 즉, 제안하는 소비자 맞춤형 추천리스트가 좀 더 정확한 것으로 나타났다.

HS 코드 분류를 위한 CNN 기반의 추천 모델 개발 (CNN-based Recommendation Model for Classifying HS Code)

  • 이동주;김건우;최근호
    • 경영과정보연구
    • /
    • 제39권3호
    • /
    • pp.1-16
    • /
    • 2020
  • 현재 운영되고 있는 관세신고납부제도는 납세의무자가 세액 산정을 스스로하고 그 세액을 본인 책임으로 납부하도록 하는 제도이다. 다시 말해, 관세법상 신고 납부제도는 납세액을 정확히 계산해서 납부할 의무와 책임이 온전히 납세의무자에게 무한정으로 부과하는 것을 원칙으로 하고 있다. 따라서, 만일 납세의무자가 그 의무와 책임을 제대로 행하지 못했을 경우에는 부족한 만큼의 세액 추징과 그에 대한 제제로 가산세를 부과하고 있다. 이러한 이유로 세액 산정의 기본이 되는 품목분류는 관세평가와 함께 가장 어려운 부분이며 잘못 분류하게 되면 기업에게도 큰 리스크가 될 수도 있다. 이러한 이유로 관세전문가인 관세사에게 상당한 수수료를 지불하면서 수입신고를 위탁하여 처리하고 있는 실정이다. 이에 본 연구에서는 수입신고 시 신고하려는 품목이 어떤 것인지 HS 코드 분류를 하여 수입신고 시 기재해야 할 HS 코드를 추천해 주는데 목적이 있다. HS 코드 분류를 위해 관세청 품목분류 결정 사례를 바탕으로 사례에 첨부된 이미지를 활용하여 HS 코드 분류를 하였다. 이미지 분류를 위해 이미지 인식에 많이 사용되는 딥러닝 알고리즘인 CNN을 사용하였는데, 세부적으로 CNN 모델 중 VggNet(Vgg16, Vgg19), ResNet50, Inception-V3 모델을 사용하였다. 분류 정확도를 높이기 위해 3개의 dataset을 만들어 실험을 진행하였다. Dataset 1은 HS 코드 이미지가 가장 많은 5종을 선정하였고 Dataset 2와 Dataset 3은 HS 코드 2단위 중 가장 데이터 샘플의 수가 많은 87류를 대상으로 하였으며, 이 중 샘플 수가 많은 5종으로 분류 범위를 좁혀 분석하였다. 이 중 dataset 3로 학습시켜 HS 코드 분류를 수행하였을 때 Vgg16 모델에서 분류 정확도가 73.12%로 가장 높았다. 본 연구는 HS 코드 이미지를 이용해 딥러닝에 기반한 HS 코드 분류를 최초로 시도하였다는 점에서 의의가 있다. 또한, 수출입 업무를 하고 있는 기업이나 개인사업자들이 본 연구에서 제안한 모델을 참조하여 활용할 수 있다면 수출입 신고 시 HS 코드 작성에 도움될 것으로 기대된다.

CLASSIFICATION FUNCTIONS FOR EVALUATING THE PREDICTION PERFORMANCE IN COLLABORATIVE FILTERING RECOMMENDER SYSTEM

  • Lee, Seok-Jun;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.439-450
    • /
    • 2010
  • In this paper, we propose a new idea to evaluate the prediction accuracy of user's preference generated by memory-based collaborative filtering algorithm before prediction process in the recommender system. Our analysis results show the possibility of a pre-evaluation before the prediction process of users' preference of item's transaction on the web. Classification functions proposed in this study generate a user's rating pattern under certain conditions. In this research, we test whether classification functions select users who have lower prediction or higher prediction performance under collaborative filtering recommendation approach. The statistical test results will be based on the differences of the prediction accuracy of each user group which are classified by classification functions using the generative probability of specific rating. The characteristics of rating patterns of classified users will also be presented.

개인화 상품 추천을 위한 해쉬테이블 기반 협력 필터링 에이전트 (Hash Table based Collaborative Filtering Agent for personalized Item Recommendation)

  • 이은영;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2792-2794
    • /
    • 2001
  • 인터넷은 정보의 바다로 표현할 만큼 방대하며, 이러한 넘치는 정보 속에서 사용자에게 필요한 정보들을 추출하여 사용자들의 효율성과 만족도를 높이는 것이 개인화 정책이고, 결과적으로 전자상거래 사이트에서의 판매의 증가를 이루기 위해 필요한 것이다. 따라서 개개인의 특성에 맞춘 개인화 서비스가 현재의 인터넷에서 제공하는 효율성을 뛰어넘을 수 있는 새로운 해결점으로 주목받고 있다. 본 논문에서는 기존의 협력 필터링(Collaborative filtering) 방법을 개선하여 사용자의 선호도(preference)를 결정하고, 이를 토대로 알맞은 아이템 추천 서비스를 사용자에게 제공하는 해쉬테이블 기반 협력 필터링 에이전트(Hash Table based Collaborative Filtering Agent)를 제안하고자 한다. 이를 통하여 기존의 사용자 또는 처음 방문한 사용자에게도 사이트를 방문하는데 만족도와 효율성을 높이도록 하는 것이 목표이다.

  • PDF

사회연결망정보를 고려하는 SVD 기반 추천시스템 (Recommender Systems using SVD with Social Network Information)

  • 김민건;김경재
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.1-18
    • /
    • 2016
  • 협업필터링은 사용자의 선호도 평가자료를 이용하여 특정 사용자의 특정 상품에 대한 선호도를 예측하고 이를 이용하여 유사한 사용자에게 상품을 추천한다. 협업필터링은 전자상거래에서의 정보 과잉현상을 줄여 주기에 가장 인기 있는 개인화 기법이다. 그러나 협업필터링은 희소성과 확장성 문제 등을 가지고 있다. 본 연구에서는 희소성과 확장성 문제와 같은 협업필터링의 주요 한계점을 보완하고 추천과정에 사용자의 정성적이고 감성적인 정보를 반영하도록 하기 위하여 사회연결망 정보와 협업필터링을 접목하는 방안을 이용한다. 본 논문에서는 특이값 분해에 내재적인 정보를 반영할 수 있도록 확장한 SVD++에 사회연결망 정보를 고려할 수 있도록 한 Social SVD++ 알고리듬을 협업필터링에 접목한 새로운 추천 알고리듬을 이용한다. 특히, 본 연구는 추천과정에 실제 사용자의 사회연결망 정보를 반영하여 모형의 성과를 평가할 것이다.

위치 기반 서비스 지원을 위한 연관 클래스 집합 생성 기법 (An Associative Class Set Generation Method for supporting Location-based Services)

  • 김호숙;용환승
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권3호
    • /
    • pp.287-296
    • /
    • 2004
  • 최근 이동 컴퓨팅 환경 하에서 위치를 기반으로 하는 다양한 서비스가 점차 증가하고 있다. 본 논문은 이동 컴퓨팅 환경에서 대량의 공간 데이타베이스를 기반으로 하는 위치 기반 서비스를 지원하기 위하여, 요청되는 질의들 사이에 존재하는 의미적으로 연관성이 있는 빈발 항목인 연관 클래스 집합을 제안하고, 이를 효과적으로 찾는 방법에 대해 소개한다. 이때 요청되는 질의들의 시간적 연관 관계, 그리고 이러한 서비스를 제공해 주는 공간 객체들 사이의 거리와 사용자의 접근 특성이 함께 고려된다 이러한 연구 결과는 이동 환경이 갖는 제약점을 극복하면서 효과적으로 위치 기반 서비스를 지원하는 바탕이 된다 즉 생성된 연관 클래스 집합은 이동 컴퓨팅 환경에서 지리 정보를 서비스 할 때 관련 자료를 추천하는 시스템에 활용할 수 있고, 지리 정보를 고려한 광고 방송이나 도시 개발 계획 둥에 이용할 수 있으며, 이동 사용자를 위한 클라이언트의 캐쉬 정책에 응용될 수 있다.

통합 평가치 예측 방안의 협력 필터링 성능 개선 효과 (The Effect of an Integrated Rating Prediction Method on Performance Improvement of Collaborative Filtering)

  • 이수정
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.221-226
    • /
    • 2021
  • 협력 필터링 기반의 추천 시스템은 사용자들의 평가 이력을 바탕으로 하여 현 사용자가 선호할 만한 상품들을 추천해 주며 현재 다양한 상업용 목적의 필수불가결한 기능이다. 추천 상품을 결정하기 위하여, 유사한 평가 이력을 기반으로 미평가 상품들에 대한 선호 예측치를 산출하는데, 기존 연구에서 대개 두 가지 방법, 즉, 유사 사용자 기반 또는 유사 항목 기반 방법을 각기 개별적으로 활용해 왔다. 이들 방법들은 사용자들의 평가 데이터가 희소할 경우 또는 유사 사용자나 유사 항목을 구하기 어려울 경우에 산출한 예측치의 정확성이 저하되는 문제점이 있다. 본 연구에서는 이들 두가지 방법을 통합하여 평가치를 예측하는 새로운 방법을 제안한다. 제안 방법의 장점은 보다 많은 수의 유사 평가치들을 참조할 수 있으므로 추천의 질이 향상된다는 점이다. 성능 실험 결과 제안 방법은 희소한 데이터셋에서 예측치 정확도, 추천 항목 적합도, 항목 순위 적합도의 모든 측면에서 기존 방법의 성능을 크게 향상시켰으며, 다소 밀집한 데이터셋에서는 예측치 정확도 측면에서는 가장 우수하고, 다른 평가 척도에서는 기존 방법과 대등한 결과를 보였다.

Freebase 기반의 추천 시스템 시각화 (Visualized recommender system based on Freebase)

  • 홍명덕;하인애;조근식
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권10호
    • /
    • pp.23-37
    • /
    • 2013
  • 본 논문에서는 영화 추천을 위해 사용자들이 명시적으로 표시한 신뢰 정보를 이용하여 소셜 네트워크와 유사하게 신뢰 네트워크를 생성하고, 그 사용자들의 연결 정도를 이용하여 추천 시스템에 적용하며, 추천 정보는 시각화 방법을 이용하여 제공하는 방법을 제안한다. 이를 통해 사용자가 명시적으로 신뢰 관계를 표현한 신뢰 네트워크에서 숨겨진 신뢰 관계를 추론한다. 시각화된 추천 정보는 영화, 음악, 인물 등 다양한 토픽에 대한 정보를 구조화된 형태로 제공하는 Freebase를 이용하였으며, 시각화 방법은 다음 3가지와 같다. (1) 사용자가 제공받고자 하는 영화의 수만큼 영화 포스터로 시각화하고, (2) 추천된 영화 중 특정 영화를 선택하면 영화 감독, 주연 배우, 장르 등의 부가적인 정보를 시각화하여 제공한다. 마지막으로 (3) 신뢰 기반의 사용자들 중 임의로 몇 명을 이웃 사용자로 선택하여 추천한다. 본 논문에서는 시각화 방법을 적용함으로써 추천 수 또는 이웃 사용자의 수, 그리고 부가 정보 요청 등 사용자의 의견(요구)을 바탕으로 추천하기 때문에 사용자의 의사결정 능력을 향상시킬 수 있다. 뿐만 아니라 본 논문에서 제안하는 추천 시각화 방법을 통해 동적으로 사용자들의 요구를 반영할 수 있고, Freebase, LinkedMDB, 위키피디아 등 현존하는 LOD의 정보 재사용을 통해 보다 풍부하게 추천 정보를 제공할 수 있다.

사용자 리뷰 마이닝을 결합한 협업 필터링 시스템: 스마트폰 앱 추천에의 응용 (A Collaborative Filtering System Combined with Users' Review Mining : Application to the Recommendation of Smartphone Apps)

  • 전병국;안현철
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.1-18
    • /
    • 2015
  • 협업 필터링은 학계나 산업계에서 우수한 성능으로 인해 많이 사용되는 추천기법이지만, 정량적 정보인 사용자들의 평가점수에만 국한하여 추천결과를 생성하므로 간혹 정확도가 떨어지는 문제가 발생한다. 이에 새로운 정보를 추가로 고려하여, 협업 필터링의 성능을 개선하려는 연구들이 지금까지 다양하게 시도되어 왔다. 본 연구는 최근 Web 2.0 시대의 도래로 인해 사용자들이 구입한 상품에 대한 솔직한 의견을 인터넷 상에 자유롭게 표현한다는 점에 착안하여, 사용자가 직접 작성한 리뷰를 참고하여 협업 필터링의 성능을 개선하는 새로운 추천 알고리즘을 제안하고, 이를 스마트폰 앱 추천 시스템에 적용하였다. 정성 정보인 사용자 리뷰를 정량화하기 위해 본 연구에서는 텍스트 마이닝을 활용하였다. 구체적으로 본 연구의 추천시스템은 사용자간 유사도를 산출할 때, 사용자 리뷰의 유사도를 추가로 반영하여 보다 정밀하게 사용자간 유사도를 산출할 수 있도록 하였다. 이 때, 사용자 리뷰의 유사도를 산출하는 접근법으로 중복 사용된 색인어의 빈도로 산출하는 방안과 TF-IDF(Term Frequency - Inverse Document Frequency) 가중치 합으로 산출하는 2가지 방안을 제시한 뒤 그 성능을 비교해 보았다. 실험결과, 제안 알고리즘을 통한 추천, 즉 사용자 리뷰의 유사도를 추가로 반영하는 알고리즘이 평점만을 고려하는 전통적인 협업 필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인할 수 있었다. 아울러, 중복 사용 단어의 TF-IDF 가중치의 합을 고려했을 때, 단순히 중복 사용 단어의 빈도만을 고려했을 때 보다 조금 더 나은 예측정확도를 얻을 수 있음도 함께 확인할 수 있었다.