• Title/Summary/Keyword: Isotropic loading

Search Result 187, Processing Time 0.189 seconds

Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data (표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법)

  • Hwang, Jin Ha;Kim, Hune Tae;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.

Investigation of the Stress Distributions in a Transversely Isotropic Medium Containing a Spheroidal Cavity (구형 공동을 가진 횡 방향 등방성매체의 응력 분포에 관한 연구)

  • 이윤복;전종균
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.159-171
    • /
    • 1997
  • This study investigates the stress distribution in a transversely isotropic medium containing a spheroidal cavity where the medium is under uniaxial tension in z-direction in one case and pure shear in the plane of isotropy in another case. The technical approach used in this study combines exact analytical and numerical methods. The exact analytical method is based upon three potential functions taken in terms of the Legendre associated functions of the first and second kind. The numerical method is based upon the finite difference approach. Numerical results concerning the two loading conditions with five anisotropic materials are presented.

  • PDF

Analysis for A Partially Loaded Orthotropic Plate And Development of Computer Program (부분하중을 받는 이방성 평판의 해석 및 컴퓨터 프로그램의 개발)

  • See, Sang Kwang;Kim, Jin Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • In this study, an exact solution of governing differential equation for the bending problem of partially loaded orthotropic rectangular plates is presented and also its computer program is developed. The method requires that two opposite edges be clamped or simply supported, or one edge clamped and the other simply supported. Any combination of boundary conditions could exist along the other edges. The plate could he subjected to uniform, partially uniform, and line loads. The solution for the deflection of rectangular plate is expressed as a Levy type single Fourier series and the loads arc expressed as a corresponding series. The advantage of the solution is that it overcomes the limitations of the previous Navier's and Levy's methods (limitation of boundary condition and loading conditions of plate), it is easy to program on a computer and it becomes fast to solve the bending problem with computer program. Calculations are presented for isotropic and orthotropic plates with different loading and boundary conditions. Comparisons are made for the isotropic plate with various boundary conditions between the result of this paper and the result of Navier, Levy and Szilard. The deflections were in excellent agreement.

  • PDF

A Study on the Development of the Dynamic Photoelastic Hybrid Method for Two Dissimilar Isotropic Bi-Materials (두 상이한 등방성 이종재료용 동적 광탄성 하이브리드법 개발에 관한 연구)

  • Sin, Dong-Cheol;Hwang, Jae-Seok;Gwon, O-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.434-442
    • /
    • 2001
  • When the interfacial crack of two dissimilar isotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid method developed in this research are valid. Separating method of stress component is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 80∼85% (in case of aluminum, 24.3∼25.9%) of Rayleigh wave velocity of epoxy resin. The near-field stress components of crack-tip are similar with those of pure isotropic material under static or dynamic loading, but very near-field stress components of crack-tip are different from those.

An Anisotropic Elasto-Plastic Constitutive Model Based on the Generalized Isotropic Hardening Rule for Clays (일반 등방경화규칙에 의거한 점토의 비등방 탄소성 구성모델)

  • 이승래;오세붕
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.17-32
    • /
    • 1994
  • To model the anisotropic behavior of soils in the case of reverse loading, an anisotropic hardening description is proposed on the basis of generalized isotropic hardening(GIH) rule. There is a core of the GIH rule in the allowance of the concept that the center of homology of isotropic hardening can be any proper stress states inside a yield surface. The plastic deformations could be represented for the condition of reverse loading, and an explicit constitutive relationship was formulated by utilizing a simple hardening function. The proposed hardening description has been compared with other anisotropic hardening models. For verification three sets of triaxial test results have been predicted for the drained and undrained behavior of overconsolidated clays and Ko consolidated clays.

  • PDF

APPLICATION OF INTEGRODIFFERENTIAL EQUATIONS FOR THE PROBLEM OF ELECTRICALLY PERMEABLE CRACK ON A PIEZOELECTRIC-CONDUCTOR INTERFACE

  • Bakirov, Vadim;Kim, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.121-126
    • /
    • 2008
  • A plane strain problem of a crack on interface between an isotropic elastic conductor and a transversely isotropic piezoelectric ceramics is considered. The problem is reduced to system integrodifferential equations on the interface. These equations relate the normal and tangential components of the crack opening vector with distribution of normal and shear stresses on the crack surfaces. It therefore make it possible to obtain an exact solution as a function of the loading applied to the crack surfaces. As an example, some analytical solutions of the crack problem are given.

  • PDF

The Static Strength Analysis and Experiment of Composite Laminate (복합재료 적층판의 정 강도 해석 및 실험)

  • 김인권;공창덕;방조혁
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.104-107
    • /
    • 2001
  • The purpose of this work is to investigate the static strength, the stress distribution, and the failure process of quasi-isotropic composite laminates made of two different matrices when loading directions are changed. We carried out static tests of $[0/-60/+60]_s$ and $[+30/-30/90]_s$ laminates. Two types of matrices used are AS4/epoxy and AS4/PEEK. The damage mechanisms of the quasi-isotropic laminate, $[0/-60/+60]_s$, strongly depend on the load direction applied to the laminate.

  • PDF

A Study on the Evolution of Local Plasticity and the Bauschinger Effects in Short Fiber Reinforced Metal Matrix Composites (단섬유 금속복합체에서의 소성역 전개과정 및 바우신저 효과에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.22-33
    • /
    • 1998
  • A continuum analysis of the evolution of plasticity and Bauschinger effect in a short fiber reinforced metal matrix composite, based on the FEM solution for a single fiber model has been performed to investigate the strengthening behavior. The evolution of matrix field quantities during one cycle of fully reversed loading have been examined in detail. The results indicate that the role of constrained matrix flow in generating different levels of matrix triaxiality during forward and reversed loading provides an important contribution to the developement of the Bauschinger effect in the metal matrix composite. Therefore, even when the plastic flow of the matrix material follows on isotropic hardening behavior, the Bauschinger effect is predicted for the composite material.

  • PDF

Path Stability of a Crack with an Eigenstrain

  • Beom, Hyeon-Gyu;Kim, Yu-Hwan;Cho, Chong-Du;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1428-1435
    • /
    • 2006
  • A slightly curved crack with an eigenstrain is considered. Solutions for a slightly curved crack in a linear isotropic material under asymptotic loading as well as for a slightly curved crack in a linear isotropic material with a concentrated force are obtained from perturbation analyses, which are accurate to the first order of the parameter representing the non-straightness. Stress intensity factors for a slightly curved crack with an eigenstrain are obtained from the perturbation solutions by using a body force analogy. Particular attention is given to the crack path stability under mode I loading. A new parameter of crack path stability is proposed for a crack with an eigenstrain. The path stability of a crack with steady state growth in a transforming material and a ferroelectric material is examined.

Finite element application of an incremental endochronic model to flexible pavement materials

  • Kerh, Tienfuan;Huang, C.Y.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.817-826
    • /
    • 1998
  • A finite element model based on the incremental endochronic theory for flexible pavement materials was developed in this study. Three grid systems with eight-node cubic isoparametric elements, and different loading steps were used to perform the calculations for a specimen of circular cylinder. The uniaxial stress experimental results on an asphalt mixture at $60^{\circ}C$ in SHRP conducted by University of California at Berkeley were used to check the ability of the derived numerical model. Then, the numerical results showed isotropic response and deviatoric response on the specimen in a three dimensional manner, which provided a better understanding for a deformed flexible material under the specified loading conditions.