• Title/Summary/Keyword: Isothiazolinone

Search Result 6, Processing Time 0.019 seconds

A Study on the Analysis of Isothiazolinone Components by High Performance Liquid Chromatography (고성능액체크로마토그래피에 의한 Isothiazolinone Components의 분석에 관한 연구)

  • 김종규;이덕희
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.102-105
    • /
    • 1992
  • Introduction : Isothiazolinone product is one of new preservatives used in cooling tower, paper mill, and general industrial waters.l) It is also effective in controlling bacteria and fungi in the manufacture and storage of dispersed pigments, such as kaolin clays, titanium dioxide, calcium carbonate and others\ulcorner Its broad-spectrum activity, excellent physical and chemical compatibility with anionic, nonionic and cationic surfactants and most organic and inorganic compounds and low toxicity at recommended use levels provide formulators with an effective, economical, and environmentally acceptable alternative to other commercial biocides. It dose not contain or generate formaldehyde and is easy to formulate (1.5% solution is supplied as an aqueous solution), so that it gains advantage over the other preservatives. The active ingredients of the isothiazolinone product are unchlorinated compound (2-methyl-4-isothiazolin-3-one) and chlorinated one (5-chloro-2-methyl-4-isothiazolin-3-one). Methods preferred for the analysis of preservatives are chromatographic methods, especially high performance liquid chromatograph (HPLC). Although several methods were satisfactory in respect to separation, no offical method has been published for the isothiazolinone components. This study was performed to search for an alternative method in order to show flexible operating conditions of HPLC and to reduce assay time.

  • PDF

Biocides Effect on the Microbiologically Influenced Corrosion of Pure Copper by Desulfovibrio sp.

  • Onan, Mert;Ilhan-Sungur, Esra;Gungor, Nihal Dogruoz;Cansever, Nurhan
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2018
  • The aims of this study were to determine the corrosion behavior of pure copper in the presence of Desulfovibrio sp. and also to investigate the effects of glutaraldehyde (GD) and isothiazolinone (ISO) on the corrosion behavior of pure copper in the presence of this sulfate-reducing bacteria (SRB) strain by using electrochemical techniques. Electrochemical measurements of pure copper were carried out at specified time intervals (0, 8, 24, 48, and 96 hr) over a period of exposure. Corrosion rates of pure copper from anodic and cathodic Tafel slopes and corrosion potential ($E_{corr}$) were determined. Biofilm and corrosion products on the copper surfaces were observed by Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectrometry (EDS) analyses. The effects of solution types (PC (Postgate's C medium) and SRB (Desulfovibrio sp.)) and exposure times of copper and biocides (ISO or GD) on the corrosion rates of pure copper were evaluated by statistical analyses. As a result of the FESEM analysis, biofilm formation was observed on the surfaces of pure copper exposed to the Desulfovibrio sp. cultures both with and without the biocides. The results show that the pure copper was corroded by Desulfovibrio sp. However, the addition of GD or ISO to the Desulfovibrio sp. culture resulted in a decrease in the corrosion rate of the pure copper. It was also observed that both of the biocides showed a similar effect on pure copper's corrosion rate caused by Desulfovibrio sp.

Preservatives in Domestic and Imported Children's Clay Products (국내 시판 어린이 점토제품 중 보존제 함유량 조사)

  • Jung, Sun Hye;Heo, Jin Yeong;Oh, Ji Hee;Park, Na-Youn;Kho, Younglim
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.1
    • /
    • pp.36-43
    • /
    • 2022
  • Background: Preservatives are used to prevent product deterioration in modeling clay. Parabens, a representative preservative, have been found to be endocrine disruptors and cause skin irritation and allergic reactions. Isothiazolinone preservatives can be irritating to the skin, respiratory tract, and eyes. Thorough investigation and regulation of clay are necessary because clay is marketed to children, who are more sensitive to the toxic effect of chemicals. Objectives: In this study, the presence of 16 preservatives was analyzed in modeling clay and the results were compared with current standards. Methods: A total of 200 samples were collected from 28 children's clay products sold in South Korea (13 from Korea and 15 imported from overseas). Twelve preservatives, such as parabens, were analyzed using high-performance liquid chromatography (HPLC). Isothiazolinone preservatives (chloromethylisothiazolinone; CMIT, methylisothiazolinone; MIT, octylisothiazolinone; OIT, and benzisothiazolinone; BIT) were analyzed using ultra performance liquid chromatography-tandem mass spectrometery (UPLC-MS/MS). Results: Dehydroacetic acid (DHA) was detected the most in the clays at 51.50% (103 cases) detection; 38 cases (median 190.42 ㎍/g) in Korean products and 65 cases (median 169.62 ㎍/g) in Chinese products. CMIT, which is prohibited in Korea, was detected in 14 (median 16.28 ㎍/g) Chinese products. OIT, which has a chemical structure similar to CMIT was found in 28 (median 68.38 ㎍/g) samples in Korean products. Conclusions: The use of CMIT and MIT in children's products is prohibited in Korea and the European Union (EU). The detection of CMIT in Chinese clay products suggests that management is necessary for imported products. It is necessary to review the safety and regulatory status for OIT because OIT was used as a substitute for CMIT and MIT in Korean products.

Fast Screening of Harmful Disinfectants in Household Products via Low-Temperature Plasma Ionization-Mass Spectrometry

  • Lee, Hyoung Jun;Kweon, Gi Ryang;Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.8 no.2
    • /
    • pp.44-47
    • /
    • 2017
  • Isothiazolinone derivatives are widely used in consumer products as disinfectants or preservatives, but there are growing concerns about their impact on human health. Therefore, rapid screening of these biocides is very important for proper control and regulation of potentially hazardous substances. To this end, low-temperature plasma (LTP) ionization mass spectrometry (MS) was investigated to demonstrate its potential for direct and selective analysis of isothiazolinones from sprayed aerosol samples. Benzisothiazolinone (BIT) was clearly identified from a commercial fabric deodorant using LTP ionization MS and MS/MS. LTP allowed selective ionization of BIT directly from the simply sprayed aerosol sample and illustrated its potential for fast screening without sample pre-treatments. Selective nature of LTP ionization, on the other hands, implicates use of LTP ionization MS as a general screening method for specific groups of hazardous chemicals in commercial products.

Simultaneous quantitative analysis of four isothiazolinones and 3-iodo-2-propynyl butyl carbamate in hygienic consumer products

  • Heo, Jin Ju;Kim, Un-Jung;Oh, Jeong-Eun
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.137-143
    • /
    • 2019
  • In this study, extraction, clean-up and instrumental analytical conditions were optimized for identifying and quantifying methyl-, chloromethylbenzi-, octyl- isothiazolinone (MIT, CMIT, BIT, OIT) and 3-iodo-2-propynyl butyl carbamate (IPBC), widely used biocidal active ingredients in human hygiene consumer products. Accuracy of the developed ultrasonic assisted extraction method followed by HPLC/MS analysis for four isothiazolinones and IPBC ranged between 60.4% and 113% in various types of consumer product samples. Method detection limits ranged 0.011-0.034 mg/kg for wet wipes, 0.57-1.5 mg/kg for liquid detergent and 0.58-1.6 mg/kg for powder detergent. Wet wipes, powder and liquid detergents collected from local market in Korea were analyzed to demonstrate the applicability of the developed method. Even after the regulation of those compounds in wet wipes, CMIT, MIT and IPBC were still frequently detected from complementary wet wipes without brand labels which were distributed to customers at local retail shops and restaurants. The maximum observed concentrations of MIT and CMIT found in those complementary wet wipes were 70.2 mg/kg and 11.3 mg/kg, respectively.

Refined Exposure Assessment for Three Active Ingredients of Humidifier Disinfectants

  • Lee, Jong-Hyeon;Kang, Hyun-Joong;Seol, Hwi-Soo;Kim, Chan-Kook;Yoon, Seung-Ki;Gwack, Jin;Kim, Yong-Hwa;Kwon, Jung-Hwan
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.253-257
    • /
    • 2013
  • Exposure assessment for three major active ingredients used for humidifier disinfectants, polyhexamethylene guanidine (PHMG), oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride (PGH), and 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) mixture, was conducted in a bedroom using an air sampler for a refined risk assessment. The experimental site was selected to reflect consumer exposure conditions. Aerosols formed by a humidifier were sampled during 8 hr at 7.5 L/min. Absorbed PHMG and PGH by the sampler were quantified using a spectrophotometric method, and high performance liquid chromatography-ultraviolet detection was used for CMIT/MIT. Three exposure scenarios were assumed for adding humidifier disinfectants to the humidifier water at 1, 2, and 10 times the volume recommended by the product suppliers, and the humidifier was on at its maximum rate of producing aerosols in order to consider reasonable worst-cases. The sampled mass of PHMG and PGH ranged 200 to $2,800{\mu}g$ and 140 to $1,900{\mu}g$, respectively, under different exposure conditions, whereas the absorbed mass of CMIT/MIT was barely detected at the detection limit of 0.11/0.29 mg/L, only at 10 times the recommended level. The resulting risk quotients for PHMG and PGH ranged 1,400 to 20,000 and 1,000 to 13,000, indicating that health risks could be significant. For CMIT/MIT mixture, risk quotients were much smaller than estimated by assuming that they are conservative in the indoor environment, probably due to oxidative reactions. The refined exposure assessment presented here may provide a useful tool for assessing risks posed by active ingredients in spray-type biocidal products.