• Title/Summary/Keyword: Isothermal extrusion

Search Result 28, Processing Time 0.022 seconds

Rheological properties and crystallization kinetics of polypropylene block copolymer with repeated extrusion

  • Sung Yu-taek;Seo Won Jin;Kim Jong Sung;Kim Woo Nyon;Kwak Dong-Hwan;Hwang Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2005
  • Rheological properties and crystallization kinetics of the polypropylene (PP) block copolymer and recycled PP block copolymer were studied by advanced rheometric expansion system (ARES), differential scanning calorimetry (DSC), and optical microscopy. In the study of the dynamic rheology, it is observed that the storage modulus and loss modulus for the PP block copolymer and recycled PP block copolymer did not change with frequency. In the study of the effect of the repeated extrusion on the crystallization rate, half crystallization time of the PP samples was increased with the number of repeated extrusion in isothermal crystallization temperature ($T_c$). From the isothermal crystallization kinetics study, the crystallization rate was decreased with the increase of the number of repeated extrusion. Also, from the result of Avrami plot, the overall crystallization rate constant (K) was decreased with the increase of the number of the repeated extrusion. From the study of the optical microscopy, the size of the spherulite of the PP samples did not change significantly with the number of repeated extrusion. However, it was clearly observed that the number of the spherulite growth sites was decreased with the number of repeated extrusion. From the results of the crystallization rate, isothermal crystallization kinetics, Avrami plots, and optical microscopy, it is suggested that the crystallization rate of the PP block copolymer is decreased with the increase of the number of repeated extrusion.

A Study on the Effect of Energy Dissipation in Extruding Clad Rod (복합봉재 압출에 의한 에너지 소산의 영향에 관한 연구)

  • Kim, Chang-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.56-64
    • /
    • 2006
  • Rapid progress in many branches of technology has led to a demand on new materials such as high strength light weight alloys, powdered alloys and composite materials. The hydrostatic extrusion is essentially a method of extruding a clad rod through a die. In order to investigate the effect of the process conditions such as friction heat, deformation and clad thickness on the clad extrusion process, viscoplastic finite element simulations were conducted. A specific model for theoretical analysis used in this study is The single scalar variable version of Hart's model. An experiment also has been carried out using 1.5MN hydrostatic extruder with variable speed ram, LVDT and load cell for comparison. It is found that the hydrostatic extrusion pressure considering the effect of heat dissipation in this theoretical work was closer to the experimental pressure than the isothermal hydrostatic extrusion pressure.

  • PDF

Automatic Surface Generation for Extrusion Die of Non-symmetric H-and U-shaped sections (비축대칭 H-형 및 U-형상의 압출금형 곡면의 자동생성)

  • 유동진;임종훈;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.572-581
    • /
    • 2003
  • In this paper, an automatic surface construction method based on B-spline surface and scalar field theory is proposed to generate the extrusion die surface of non-symmetric H-and U-shaped sections. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u-and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity of the proposed method, automatic surface generation is carried out for extrusion die of non-symmetric H-and U-shaped sections.

Automatic Surface Generation for Extrusion Die of Non-symmetric H- and U-shaped Sections (비축대칭 H-형 및 U-형상의 압출금형 곡면의 자동생성)

  • 임종훈;유동진;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.318-321
    • /
    • 2003
  • In order to generate the extrusion die surface of non-symmetric H- and U-shaped sections, an automatic surface construction method based on B-spline surface and scalar field theory is proposed in this study. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections.

  • PDF

Automatic Surface Generation for Extrusion Die of Complicated Sections (복잡한 형상의 압출금형 곡면의 자동생성)

  • 임종훈;유동진;권혁홍;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.197-200
    • /
    • 2003
  • An automatic surface construction method based on B-spline surface and scalar field theory is proposed to generate the extrusion die surface of complicated sections in this paper. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections.

  • PDF

A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of isothermal Square Die Extrusion of a Square Section Based on ALE Description (강-점소성 ALE 유한요소 수식화에 근거한 사각형 형재의 평금형 등온 압출에 대한 3차원 해석)

  • 강연식;양동열
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.55-60
    • /
    • 1996
  • In the finite element analysis of metal forming processes the updated Lagrangian approach has been widely and effectively used to simulate the non-steady state problems. however some difficulties have arisen from abrupt flow change as in extrusion through square dies. In the present work an ALE(arbitrary Lagrangian-Euleria) finite element formulation for deforma-tion analysis are presented fro rigid-viscoplastic materials. The developed finite element program is applied to the isothermal analysis of square die extrusion of a square section. The computational results are compared with those by the updated Lagrangian finite element analysis.

  • PDF

Automatic Surface Generation for Extrusion Die of Arbitrarily Shaped Section using B-spline Surfaces and Scalar Field Theory (B-스플라인 곡면과 스칼라장 이론을 이용한 임의의 형상의 압출금형 곡면의 자동생성)

  • 임종훈;김광혁;유동진;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • A new approach for the design of extrusion die surface of arbitrarily shaped section is presented. In order to generate the extrusion die surface. an automatic surface construction method based on B-spline surface and scalar field theory is proposed. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity and effectiveness of the proposed method, automatic surface generation is carried out for extrusion dies of arbitrarily shaped sections.

The Precise Extrusion-Technical Development to Get Excellent Mechanical-property and Accurate Shape- Dimension (우수한 기계적 특성과 형상치수 확보를 위한 정밀 압출기술개발)

  • Lee, Hyun-Cheol;Lee, Kwang-Sik;Oh, Kae-Hee;Park, Sang-Woo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.311-320
    • /
    • 2009
  • Most advanced countries are researching to apply light weight materials far rolling stock because weight reduction for railway body derives cost-saving, energy-saving, and high-speed. Likewise, current Korea rolling stock field makes arduous effects of weight-reduction, miniaturization, and high-efficiency to achieve a high-speed railway. Aluminum becomes suitable material for these projects because it is much lighter than steel or stainless. Manufacturing the railway car body by using the Aluminum is increasing because Aluminum is not bringing the corrosion by unique oxidation-passivate. Aluminum extrusion profile far railway body requires a high mechanical property, accurate shape dimension, and stable quality because the railway body is composed with many different kinds of extruded profiles. Therefore, it is necessary to research about Aluminum precision-extrusion technology to maintain exit temperature and die load. The goal of this project is applying the Aluminum extrusion profile to next-generation railway car body by developing the Aluminum extrusion profile according to precision-extrusion technology which may maintain isothermal exit temperature.

  • PDF

Microstructural Evolution during Isothermal Heating and Thixoformability of Mg-5%Al Alloy (Mg-5%Al합금의 등온가열에 따른 미세조직변화 및 반응고 성형성)

  • Kim, Jeong-Min;HwangBo, Hyun-Seok;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.246-252
    • /
    • 2001
  • Variation in the microstructure of Mg-5%Al semi-solid slurry during isothermal heating was investigated in relation to initial microstructure, holding time, and holding temperature. Specimens with three different initial microstructures were isothermally heated. Dendritic structure in as-cast ingot was decomposed into solid globules in the semi-solid slurry during isothermal holding, while in the recrystallized specimens prepared by extrusion or rolling the size of solid particles was continuously increased during the heating. Effects of mold temperature and liquid fraction of slurry on the mold filling ability were also studied. Very thin section (0.4 mm) could be successfully filled up to 50 mm by 60% liquid slurry when the mold was heated to $600^{\circ}C$.

  • PDF

Characteristics on the Hot Extrusion of Semi-Solid Al-Zn-Mg Alloy (반응고 Al-Zn-Mg 합금의 고온 압출 시 특성 평가)

  • Cho, Kuk-Rae;Kim, Jeoung-Han;Yeom, Jong-Taek;Shim, Sung-Yong;Lim, Su-Gun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.405-408
    • /
    • 2007
  • Semi-solid Al-Zn-Mg alloys were produced using a cooling plate method in order to investigate the extrudability. Al melt was poured on cooling plate which was adjusted at $60^{\circ}$ with respect to the horizontal plane, and the melt was cooled by water circulation underneath. Obtained Semi-solid feedstock has globular microstructure but also contains considerable amount of gas pore. Due to the pore, tensile elongation of the semi-solid feedstock was very low and it doesn't show yield point phenomenon. Isothermal hot extrusion was carried out using at $400^{\circ}C$ with a ram speed of 1mm/sec and an extrusion ratio of 25:1. The extruded bar show noticeably improved tensile ductility and strength because pore volume fraction decreased from 5% to 0.8% after extrusion. Mechanical properties of the semi-solid extruded bar were compared with that of commercial casting alloy..

  • PDF