• 제목/요약/키워드: Isothermal Titration Calorimetry

검색결과 22건 처리시간 0.026초

A Product Inhibition Study on Adenosine Deaminase by Spectroscopy and Calorimetry

  • Saboury, Ali Akbar;Divsalar, Adeleh;Jafari, Ghasem Ataie;Moosavi-Movahedi, Ali Akbar;Housaindokht, Mohammad Reza;Hakimelahi, Hosain
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.302-305
    • /
    • 2002
  • Kinetic and thermodynamic studies have been made on the effect of the inosine product on the activity of adenosine deaminase in a 50 mM sodium phosphate buffer, pH 7.5, at $27^{\circ}C$ using UV spectrophotometry and isothermal titration calorimetry (ITC). A competitive inhibition was observed for inosine as a product of the enzymatic reaction. A graphical-fitting method was used for determination of the binding constant and enthalpy of inhibitor binding by using isothermal titration microcalorimetry data. The dissociation-binding constant is equal to $140\;{\mu}M$ by the microcalorimetry method, which agrees well with the value of $143\;{\mu}M$ for the inhibition constant that was obtained from the spectroscopy method.

Affinity between TBC1D4 (AS160) phosphotyrosine-binding domain and insulin-regulated aminopeptidase cytoplasmic domain measured by isothermal titration calorimetry

  • Park, Sang-Youn;Kim, Keon-Young;Kim, Sun-Min;Yu, Young-Seok
    • BMB Reports
    • /
    • 제45권6호
    • /
    • pp.360-364
    • /
    • 2012
  • Uptake of circulating glucose into the cells happens via the insulin-mediated signalling pathway, which translocates the glucose transporter 4 (GLUT4) vesicles from the intracellular compartment to the plasma membrane. Rab GTPases are involved in this vesicle trafficking, where Rab GTPases-activating proteins (RabGAP) enhance the GTP to GDP hydrolysis. TBC1D4 (AS160) and TBC1D1 are functional RabGAPs in the adipocytes and the skeletonal myocytes, respectively. These proteins contain two phosphotyrosine-binding domains (PTBs) at the amino-terminus of the catalytic RabGAP domain. The second PTB has been shown to interact with the cytoplasmic region of the insulin-regulated aminopeptidase (IRAP) of the GLUT4 vesicle. In this study, we quantitatively measured the ${\sim}{\mu}M$ affinity ($K_D$) between TBC1D4 PTB and IRAP using isothermal titration calorimetry, and further showed that IRAP residues 1-49 are the major region mediating this interaction. We also demonstrated that the IRAP residues 1-15 are necessary but not sufficient for the PTB interaction.

Engineering and Characterization of the Isolated C-Terminal Domain of 5-Enolpyruvylshikimate-3-phosphate (EPSP) Synthase

  • Kim, Hak-Jun;Kim, Hyun-Woo;Kang, Sung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1385-1389
    • /
    • 2007
  • 5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the formation of EPSP and inorganic phosphate from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) in the biosynthesis of aromatic amino acids. To delineate the domain-specific function, we successfully isolated the discontinuous C-terminal domain (residues 1-21, linkers, 240-427) of EPSP synthase (427 residues) by site-directed mutagenesis. The engineered C-terminal domains containing no linker (CTD), or with gly-gly ($CTD^{GG}$) and gly-ser-ser-gly ($CTD^{GSSG}$) linkers were purified and characterized as having distinct native-like secondary and tertiary structures. However, isothermal titration calorimetry (ITC), $^{15}N-HSQC$,\;and\;^{31}P-NMR$ revealed that neither its substrate nor inhibitor binds the isolated domain. The isolated domain maintained structural integrity, but did not function as the half of the full-length protein.

종양 억제 인자, Merlin의 FERM 도메인과 C-말단 도메인간의 결합 (Interaction of FERM Domain of Tumor Suppressor, Merlin to its C-terminal Domain.)

  • 강범식;오정일
    • 생명과학회지
    • /
    • 제17권9호통권89호
    • /
    • pp.1303-1307
    • /
    • 2007
  • A tumor suppressor, merlin is a member of ERM family proteins. It consists of N-terminal FERM domain, ${\alpha}-helical$ region, and C-terminal domain. Alternative splicing of merlin's mRNA generates two isotypes of merlin. Isotype I, which has exon17 at the C-terminus instead of exon16 in isotype II, is known to have tumor suppressor activity. Like other ERM proteins, the C-terminal domain of merlin isotype I interacts to its FERM domain. That of isotype II, however, was reported not to bind FERM domain despite the large common part of C-terminal domain, which possibly binds FERM domain. Here, we show the binding of FERM domain to both C-terminal domains of merlin's two isotypes by isothermal titration calorimetry. These results support that merlin isotype II also can form a closed conformation or a multimer by intramolecular or intermolecular interactions using their FERM domain and C-terminal domain.

A New Approach for Thermodynamic Study on the Binding of Human Serum Albumin with Cerium Chloride

  • Rezaei Behbehani, G.;Divsalar, A.;Saboury, A.A.;Faridbod, F.;Ganjali, M.R.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1262-1266
    • /
    • 2009
  • Thermodynamics of the interaction between Cerium (III) chloride, $Ce^{3+}$, with Human Serum Albumin, HSA, was investigated at pH 7.0 and $27\;{^{\circ}C}$ in phosphate buffer by isothermal titration calorimetry. Our recently solvation model was used to reproduce the enthalpies of HSA interaction by $Ce^{3+}$. The solvation parameters recovered from our new model, attributed to the structural change of HSA and its biological activity. The interaction of HSA with $Ce^{3+}$ showed a set of two binding sites with negative cooperativity. $Ce^{3+}$ interacts with multiple sites on HSA affecting its biochemical and biophysical properties.

등온적정열량계를 이용한 BaCl2와 EDTA 킬레이션 결합 반응의 pH 영향 (Influence of pH on Chelation of BaCl2 and EDTA Using Isothermal Titration Calorimetry)

  • 육가은;장지웅
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.279-284
    • /
    • 2023
  • 등온 적정 열량계는 리간드-수용체 사이의 킬레이션 결합 반응의 엔탈피, 깁스에너지, 엔트로피, 화학양론 등 포함한 모든 열역학적 정보를 측정하는데 유용한 기술이다. 단일독립결합모델을 이용하여 Tricine과 HEPES 완충용엑에서의 BaCl2 와 ethylenediaminetetraacetic acid (EDTA)의 킬레이션 결합에서의 열역학적 정보를 획득하였다. 등온 적정 열량계를 이용하여 pH 7~11 영역에서의 킬레이션 결합의 메커니즘과 최적의 결합 조건을 확인하였다. BaCl2와 EDTA의 결합은 자발적인 발열반응이며 pH가 증가할수록 엔트로피적 영향이 높아진다. 1:1로 결합하는 pH 영역은 pH 9.0 근처에서 매우 좁은 영역에서 나타난다.

Interaction for Phosphotransfer between N-Terminal Domain of Enzyme I and HPr of E. coli Phosphoenolpyruvate:Sugar Phosphotransferase System.

  • Seok, Yeong-Jae
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1998년도 학술발표회
    • /
    • pp.12-12
    • /
    • 1998
  • The interaction between the N-terminal domain of enzyme I (EIN) and the histidine-containing phosphocarrier protein HPr of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system has been investigated by Isothermal Titration Calorimetry and heteronuclear magnetic resonance spectroscopy.(omitted)

  • PDF

A Thermodynamic Study of New Designed Complex of Ethylendiamine 8-Hydroxyquinolinato Palladium(II) Chloride with Calf Thymus DNA

  • Saeidfar, M.;Masouri-Torshizi, H.;Behbehani, G. Rezaei;Divsalar, A.;Saboury, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.1951-1955
    • /
    • 2009
  • A Thermodynamic study on the interaction of bovine calf thymus DNA with new designed Pd(II) complex (Ethylendiamine- 8-hydroxyquinolinato Palladium(II) chloride) was studied by using isothermal titration calorimetry (ITC) at 27 ${^{\circ}C}$ in Tris buffer solution at pH = 7.5. The enthalpies of Pd(II) complex + DNA interaction are reported and analysed in terms of the new solvation theory. It was indicated that there are three identical and non-cooperative sites for Pd(II) complex. The binding of a Pd(II) complex is endothermic with association equilibrium constants of 428.03 m$M^{-1}$ at 27 ${^{\circ}C}$. The binding of Pd(II) complex can cause some changes in the stability of the DNA at low and high Pd(II) complex concentrations. Our results suggested that this complex might interact with DNA as an intercalator, thus interfering with DNA replication and cell proliferation.

Biochemical characterization of ferredoxin-NADP+ reductase interaction with flavodoxin in Pseudomonas putida

  • Yeom, Jin-Ki;Park, Woo-Jun
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.476-481
    • /
    • 2012
  • Flavodoxin (Fld) has been demonstrated to bind to ferredoxin-NADP$^+$ reductase A (FprA) in Pseudomonas putida. Two residues ($Phe^{256}$, $Lys^{259}$) of FprA are likely to be important for interacting with Fld based on homology modeling. Site-directed mutagenesis and pH-dependent enzyme kinetics were performed to further examine the role of these residues. The catalytic efficiencies of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ proteins were two-fold lower than those of the wild-type FprA. Homology modeling also strongly suggested that these two residues are important for electron transfer. Thermodynamic properties such as entropy, enthalpy, and heat capacity changes of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ were examined by isothermal titration calorimetry. We demonstrated, for the first time, that $Phe^{256}$ and $Lys^{259}$ are critical residues for the interaction between FprA and Fld. Van der Waals interactions and hydrogen bonding were also more important than ionic interactions for forming the FprA-Fld complex.

A Thermodynamic Study on the Binding of Cobalt Ion with Myelin Basic Protein

  • Behbehani, G. Rezaei;Saboury, A.A.;Baghery, A. Fallah
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.736-740
    • /
    • 2008
  • The interaction of myelin basic protein (MBP) from bovine central nervous system with divalent calcium ion was studied by isothermal titration calorimetry at 27 ${^{\circ}C}$ in aqueous solution. The extended solvation model was used to reproduce the enthalpies of $Co^{2+}$-MBP interaction over the whole $Co^{2+}$ concentrations. The solvation parameters recovered from the solvation model were attributed to the structural change of MBP due to the metal ion interaction. It was found that there is a set of three identical and noninteracting binding sites for $Co^{2+}$ ions. The association equilibrium constant is 0.015 ${\mu}M^{-1}$. The molar enthalpy of binding is $\Delta$H = −14.60 kJ $mol^{-1}$.