Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.8.071

Biochemical characterization of ferredoxin-NADP+ reductase interaction with flavodoxin in Pseudomonas putida  

Yeom, Jin-Ki (Department of Environmental Science and Ecological Engineering, Korea University)
Park, Woo-Jun (Department of Environmental Science and Ecological Engineering, Korea University)
Publication Information
BMB Reports / v.45, no.8, 2012 , pp. 476-481 More about this Journal
Abstract
Flavodoxin (Fld) has been demonstrated to bind to ferredoxin-NADP$^+$ reductase A (FprA) in Pseudomonas putida. Two residues ($Phe^{256}$, $Lys^{259}$) of FprA are likely to be important for interacting with Fld based on homology modeling. Site-directed mutagenesis and pH-dependent enzyme kinetics were performed to further examine the role of these residues. The catalytic efficiencies of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ proteins were two-fold lower than those of the wild-type FprA. Homology modeling also strongly suggested that these two residues are important for electron transfer. Thermodynamic properties such as entropy, enthalpy, and heat capacity changes of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ were examined by isothermal titration calorimetry. We demonstrated, for the first time, that $Phe^{256}$ and $Lys^{259}$ are critical residues for the interaction between FprA and Fld. Van der Waals interactions and hydrogen bonding were also more important than ionic interactions for forming the FprA-Fld complex.
Keywords
Ferredoxin-NADP$^+$ reductase; Flavodoxin; Isothermal titration calorimetry; Protein-protein interaction; Pseudomonas putida KT2440;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Lee, Y., Yeom, J., Kang, Y. S., Kim, J., Sung, J. S., Jeon, C. O. and Park, W. (2007) Molecular characterization of fprB (ferredoxin- NADP+ reductase) in Pseudomonas putida KT2440. J. Microbiol. Biotechnol. 17, 1504-1512.   과학기술학회마을
2 Birch, O. M., Hewitson, K. S., Fuhrmann, M., Burgdorf, K., Baldwin, J.E., Roach, P.L. and Shaw, N. M. (2000) MioC is an FMN-binding protein that is essential for Escherichia coli biotin synthase activity in vitro. J. Biol. Chem. 275, 32277-32280.   DOI   ScienceOn
3 Hu, Y., Li, Y., Zhang, X., Guo, X., Xia, B. and Jin, C. (2006) Solution structures and backbone dynamics of a flavodoxin MioC from Escherichia coli in both Apo- and Holo-forms: implications for cofactor binding and electron transfer. J. Biol. Chem. 281, 35454-35466.   DOI   ScienceOn
4 Yeom, J., Jeon, C. O., Madsen, E. L. and Park, W. (2009) In vitro and in vivo interactions of ferredoxin-$NADP^{+}$ reductases in Pseudomonas putida. J. Biochem. 145, 481-491.   DOI   ScienceOn
5 Jung, Y.S., Roberts, V. A., Stout, C. D. and Burgess, B. K. (1999) Complex formation between Azotobacter vinelandii ferredoxin I and its physiological electron donor NADPH-ferredoxin reductase. J. Biol. Chem. 274, 2978- 2987.   DOI   ScienceOn
6 Riaz, M., Rashid, M. H., Sawyer, L., Akhtar, S., Javed, M. R., Nadeem, H. and Wear, M. (2012) Physiochemical properties and kinetics of glucoamylase produced from deoxy- D-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis. Food Chem. 130, 24-30.   DOI   ScienceOn
7 Fischer, F., Raimondi, D., Aliverti, A. and Zanetti, G. (2002) Mycobacterium tuberculosis FprA, a novel bacterial NADPH-ferredoxin reductase. Eur. J. Biochem. 269, 3005-3013.   DOI   ScienceOn
8 Lee, Y., Peña-Llopis, S., Kang, Y. S., Shin, H. D., Demple, B., Madsen, E. L., Jeon, C. O. and Park, W. (2006) Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440. Biochem. Biophys. Res. Commum. 339, 1246-1254.   DOI   ScienceOn
9 Ceccarelli, E. A., Arakaki, A. K., Cortez, N. and Carrillo, N. (2004) Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochim. Biophys. Acta. 1698, 155-165.   DOI   ScienceOn
10 Kurisu, G., Kusunoki, M., Katoh, E., Yamazaki, T. and Teshima, K. (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat. Struct. Biol. 8, 117-121.   DOI   ScienceOn
11 Sancho, J. (2006) Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol. Life Sci. 63, 855-864.   DOI
12 Kurisu, G., Kusunoki, M., Katoh, E., Yamazaki, T. and Teshima, K. (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat. Struct. Biol. 8, 117-121.   DOI   ScienceOn
13 Sridhar-Prasad, G., Kresge, N., Muhlberg, A. B., Shaw, A., Jung, Y. S. and Burgess, B. K. (1998) The crystal structure of NADPH: ferredoxin reductase from Azotobacter vinelandii. Protein Sci. 7, 2541-2549.   DOI   ScienceOn
14 Martinez-Julvez, M., Medina, M. and Gomez-Moreno, C. (1999) Ferredoxin-NADP(+) reductase uses the same site for the interaction with ferredoxin and flavodoxin. J. Biol. Inorg. Chem. 4, 568-578.   DOI
15 Asghari, S. M., Khageh, K., Dalfard, A. B., Pazhang, M. and Karbalaei-Heidari, H. R. (2011) Temperature, organic solvent and pH stabil: zation of the neutral protease from saling vibrio nrotedyticus: significance of the strutural calcium. BMB Rep. 44, 665-668.   DOI   ScienceOn
16 Jelesarov, I. and Bosshard, H. R. (1994) Thermodynamics of ferredoxin binding to ferredoxin: $NADP^{+}$ reductase and the role of water at the complex interface. Biochemistry 33, 13321-13328.   DOI   ScienceOn
17 Aoki, M., Ishimori, K., Fukada, H., Takahashi, K. and Morishima, I. (1998) Isothermal titration calorimetric studies on the associations of putidaredoxin to NADH-putidaredoxin reductase and P450cam. Biochim. Biophys. Acta. 1384, 180-188.   DOI   ScienceOn
18 Martínez-Júlvez, M., Medina, M. and Velázquez-Campoy, A. (2009) Binding thermodynamics of ferredoxin: $NADP^{+}$ reductase: two different protein substrates and one energetic. Biophys. J. 96, 4966-4975.   DOI   ScienceOn
19 Hellerman, L. and Coffey, D. S. (1967) Studies on crystalline D-amino acid oxidase. V. Characterization of borohydride-reduced enzyme-substrate intermediate. Synthesis of epsilon- N-(1-carboxyethyl)-L-lysine. J. Biol. Chem. 242, 582-589.
20 Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. and Pease, L.R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59.   DOI   ScienceOn
21 Zhang, R., Cui, Y., Zhang, X., Yang, Z., Zhao, Y., Song, Y., Wu, C. and Zhang, J. (2010) Soluble expression, purtication and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2. BMB Rep. 43, 801-806.   DOI   ScienceOn