• Title/Summary/Keyword: Isothermal Condition

Search Result 163, Processing Time 0.026 seconds

Extension of Group Interaction Modelling to predict chemorheology of curing thermosets

  • Altmann, Nara;Halley, Peter J.;Nicholson, Timothy M.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.91-102
    • /
    • 2009
  • This paper describes an extension of viscoelastic Group Interaction Modelling (GIM) to predict the relaxation response of linear, branched and cross-linked structures. This model is incorporated into a Monte Carlo percolation grid simulation used to generate the topological structure during the isothermal cure of a gel, so enabling the chemorheological response to be predicted at any point during the cure. The model results are compared to experimental data for an epoxy-amine systems and good agreement is observed. The viscoelastic model predicts the same exponent power-law behaviour of the loss and storage moduli as a function of frequency and predicts the cross-over in the loss tangent at the percolation condition for gelation. The model also predicts the peak in the loss tangent which occurs when the glass transition temperature surpasses the isothermal cure temperature and the system vitrifies.

Joinability of Tool Steels by TLP Bonding (천이액상확산접합에 의한 합금공구강의 접합특성)

  • 권병대;이원배;김봉수;홍태환;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.69-74
    • /
    • 2003
  • The mechanical properties of STD11 Joints by using TLP (Transient Liquid Phase Diffusion) bonding method employing MBF-30 and MBF-80 insert metals were investigated with concerning to the microstructural change. TLP bonding of STD 11 was carried out at 1323∼1423K for 0.6ks∼3.6ks in vacuum. The microstructure and the element distribution of the interlayer between tool steels and insert metals showed specific feature with bonding conditions. It was found that the width of the interlayer increased at initial bonding stage. However, the width of interlayer showed nearly constant value during the isothermal solidification. After isothermal solidification was completed, the joint showed homogeneous element distribution and similar microstructure with base metal because of the grain boundary migration to the bonded interlayer. The bonding strength measured by a tensile test has been varied with the bonding conditions. The maximum joint strength, 760MPa, was obtained with the condition of 1423K for 1.2ks using MBF30 insert metal in this experiment.

Field Application of Power Cable Diagnosis System (전력케이블 열화진단기법의 현장적용)

  • Kim, Ju-Yong;Han, Jae-Hong;Song, Il-Keun;Kim, Sang-Jun;Lee, Jae-Bong;Oh, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.148-151
    • /
    • 2002
  • In order to prevent the failures of underground distribution power cables we need to measure insulation condition in the field. Until now we used DC high voltage as a power source for the cable diagnosis but it was not proper method to the XLPE insulation cables because DC high voltage can affect sound insulation and can't diagnose exactly insulation degradation. For these reasons we imported isothermal relaxation current measurement system called by KDA-1 from germany but it's reliability did not proved in our URD cables. DC voltage decay measurement system was developed by domestic company but they don't have field experience. In this paper we tried to prove reliability of these two systems in the field. Through the field diagnosis and Ac breakdown test the two systems showed similar results.

  • PDF

Assessment of clothing ventilation by a trace gas method (Trace gas법에 의한 의복의 환기 양상의 평가)

  • 추미선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.8
    • /
    • pp.1387-1395
    • /
    • 1997
  • Effects of the ambient air temperature and the opening position on the pattern of the clothing ventilation of a thermal manikin wearing an impermeable blouse were investigated by the trace gas method. Under an isothermal condition, the ventilation was governed by diffusion, and the ventilation rate through the wrist-openings was greatly affected by the distance from the openings. Under non-isothermal conditions, however, the ventilation was accelerated by the convection driven by the temperature gradient between the clothing microclimate and the surrounding air; the greater the temperature gradient, the greater the ventilation. Even though it was certainly affected by the ambient air temperature, the ventilation rate was more significantly influenced by the position of openings. The ventilation patterns at the arm and the body were distinctive.

  • PDF

Dehydriding Kinetics of the Mg2NiHx by Isothermal Thermogravimetry Analysis (등온 열중량 분석에 의한 Mg2NiHx 탈수소화 반응속도 연구)

  • Hong, Tae Whan;Kim, Young Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2000
  • In order to investigate the dehydriding properties of the $Mg_2NiH_x$ formed by hydrogen induced mechanical alloying, we performed isothermal thermogravimetry analysis at 453, 463, 473, 483, 493, 503 and 513K for 1 hours. Dehydrogenation kinetics were dependant strongly on the MA conditions which determine the In other words, kinds of synthesized hydrides phases and the crystal microstructures. The MA condition, 66:1 BCR(balls to chips mass ratio), especially 96h milling time, revealed the hydride phases of nano-/ amorphous state and the dehydriding activation energy of $43.4{\pm}3.6kJ/mole$.

  • PDF

Equilibria and Dynamics of Toluene and Trichloroethylene onto Activated Carbon Fiber

  • Park, Jee-Won;Lee, Young-Whan;Choi, Dae-Ki;Lee, Sang-Soon
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • Adsorption dynamics for toluene and trichloroethylene with an isothermal fixed bed of activated carbon fiber were investigated. Equilibrium isotherms were measured by a static method for toluene and trichloroethylene onto activated carbon fiber at temperatures of 298, 323, and 348 K and pressure up to 3 kPa for toluene and 6 kPa for trichloroethylene, respectively. These results were correlated by the Toth equation. And dynamic experiments in an isothermal condition of 298 K were examined. Breakthrough curves reflected the effects of the experimental variables such as partial pressures for adsorbate and interstitial bulk velocities of gas flow. To present the column dynamics, a dynamic model based on the linear driving force (LDF) mass transfer model was applied.

  • PDF

Creep Lifetime Prediction of Composite Geogrids using Stepped Isothermal Method

  • Koo, Hyun-Jin;Cho, Hang-Won
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.158-164
    • /
    • 2006
  • The creep behavior of newly developed composite geogrids which consists of PET yarns sheathed in PP were evaluated using SIM. For the SIM procedure, three test parameters, the applied loads, temperature steps and number of ribs were investigated, The study confirmed that temperature steps of 10 and 14$^{\circ}C$ up to 80$^{\circ}C$ are applicable for composite geogrids due to the different transition temperatures between two materials. At applied loads of 40 and 50%, only primary creep state was measured, while secondary creep state appeared at the applied loads of 60%, The lifetimes of composite geogrids were estimated at each of loading level using statistical reliability analysis technique. The results show that the lifetimes longer than 100 years can be predicted within 16 hours. Therefore, SIM is very effective and economical accelerated creep test methods, especially for lifetime prediction. This gives guidelines for users to select the appropriate factor of safety against creep considering the field condition within shorter test times.

  • PDF

Thermal Analysis of Semiconductive Materials (반도전 재료의 열적 특성에 대한 연구)

  • Nam, Jin-Ho;Kim, Woong;Nah, Yeon-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.223-223
    • /
    • 2007
  • Thermal and mechanical properties were investigated in several semi-conductive materials which is composed of carbon black and polymer. EVA, EEA, and EBA is normally used for matrix polymer and normally acetylene black and furnace black is used. Isothermal thermo gravimetric analysis is done as a function of atmosphere and temperature. In nitrogen atmosphere semicon compound was slowly degradaded but in ambient condition degradaded fast. So in the cable manufacturing, atmosphere and materials are very important.

  • PDF

Assessment of Hot Deformation and Grain Size Distribution in a Udimet 720Li Pancake (Udimet 720Li 합금의 고온변형 및 결정립분포 예측)

  • 염종택;나영상;박노광
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.538-546
    • /
    • 2002
  • Hot deformation behavior of Udiment720Li was characterized by compression tests in the temperature range of 10$25^{\circ}C$ to 115$0^{\circ}C$ and the strain rate range of $0.0005 s^{-1};to;5 s^{-1}$. The combination of dynamic material model (DMM) and Ziegler's instability criterion was applied to predict an optimum condition and unstable regions for hot forming. A dynamic recrystallization model coupled with FEM results was used to interpret the evolution of microstructures. In order to verify the reliability of the present coupled model, isothermal forging was performed in the temperature range 1050~115$0^{\circ}C$ at strain rates of $0.05 s^{-1};and;0.005 s^{-1}$. The present model was successfully applied to the hot forming process of Udimet720Li.

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.