DOI QR코드

DOI QR Code

Assessment of Hot Deformation and Grain Size Distribution in a Udimet 720Li Pancake

Udimet 720Li 합금의 고온변형 및 결정립분포 예측

  • 염종택 (한국기계연구원 재료기술연구소 공정연구부) ;
  • 나영상 (한국기계연구원 재료기술연구소 공정연구부) ;
  • 박노광 (한국기계연구원 재료기술연구소 공정연구부)
  • Published : 2002.10.01

Abstract

Hot deformation behavior of Udiment720Li was characterized by compression tests in the temperature range of 10$25^{\circ}C$ to 115$0^{\circ}C$ and the strain rate range of $0.0005 s^{-1};to;5 s^{-1}$. The combination of dynamic material model (DMM) and Ziegler's instability criterion was applied to predict an optimum condition and unstable regions for hot forming. A dynamic recrystallization model coupled with FEM results was used to interpret the evolution of microstructures. In order to verify the reliability of the present coupled model, isothermal forging was performed in the temperature range 1050~115$0^{\circ}C$ at strain rates of $0.05 s^{-1};and;0.005 s^{-1}$. The present model was successfully applied to the hot forming process of Udimet720Li.

Keywords

References

  1. K.R. Bain, et al, 1988, "Development of damage tolerant :Microstructure in Udimet720", Superalloy 1988, p. 13.
  2. F.E. Screrzenie and G.E. Maurer, 1984, "Development of Udimet720 for high strength disk application", Superalloy 1984, p. 573.
  3. D.J. Bryant, G. Mclntosh, 1996, "The manufacrure and Evaluation of a Large Turbine Disc in Cast and Wrought Alloy 720Li", Superalloy 1996, p. 713.
  4. 염종택, 김인수, 박노광, 1997, "열간단조된 Alloy718의 결정립분포 해석", 대한금속학회지, 제35권 제10호, p. 1424
  5. Y.V.R.K. prasad, et al, 1984, "Modelling of dynamic material behavior in hot deformation", Metall. Trans. A, Vol. 15A, p. 1883.
  6. C.I. Garcia, et. al., 1994, "Hot deformation behavior of superalloy 718", Superalloys 718, 625, 706, p. 293.
  7. H. Ziegler, 1963, "Progress in Solid Mechanics", John Wiley and Sons. New York, NY, Vol.4, p. 93.
  8. Y.V.R.K. Prasad and S. Sasidhara, 1997, "Hot working guide", ASM international, p. 382.
  9. W.H. Couts, JR. and T.E. Howson, 1987, "Wroght alloys", in Superalloy II (eds. C.T. Sims), p. 441
  10. A.Y. Kandeil, et. al., 1980, "Flow behaviour of Mar M200 powder compacts during isothermal forging", Metal Sci. p. 493
  11. J.J. Jonas, et al, 1969, "Strength and structure under hot-working conditions", Met. Rev., Vol. 14, p. 1. https://doi.org/10.1179/095066069790138056
  12. C. Devadas, I.V. Samarasekera and E.B. Hawbolt, 1991, "The Thermal and Metallurgical State of Steel Strip during Hot Rolling: Part Ill.", Metall.Trans. A, Vol. 22A, p. 335.
  13. 염종택, 박노광, 1997, "해머 단조된 Alloy718 디스크의 결정립 분포 해석", 한국소성가공학회지, 제6권, 제3호, p. 250.
  14. G. Shen, S.L. Semiatin and R. Shivpuri, 1995, "Modeling Microstructural Development during the Forging of Waspaloy", Metall. Trans. A, Vol. 26A, p. 1795.
  15. T. Matsui, H. Takizawa, H. Kikuchi and S. Wakita 2000, "The Microstructure Prediction of Alloy 720Li for Turbine Disk Applications", Superalloy 2000, p. 127.
  16. 박노광, 염종택, 1997, "Alloy 718의 동적재결정에 따른 결정립 변화", 제11회 재료강도심포지움, p. 43

Cited by

  1. Ingot-Breakdown Design of Tower Flange Material for Offshore Wind Turbine vol.21, pp.7, 2012, https://doi.org/10.5228/KSTP.2012.21.7.412