• Title/Summary/Keyword: Isothermal Characteristics

Search Result 258, Processing Time 0.028 seconds

Numerical Study on the Reacting Flow Field abound Rectangular Cross Section Bluff Body (사각 둔각물체 주위의 반응유동장에 대한 수치적 연구)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.64-69
    • /
    • 2013
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to simulate an engine nacelle fire and to complement the previous experimental results of the bluff body stabilized flames. Fire Dynamic Simulator (FDS) based on the Direct Numerical Simulation (DNS) was employed to clarify the characteristics of reacting flow around bluff body. The overall reaction was considered and the constant for reaction was determined from flame extinction limits of experimental results. The air used atmosphere and the fuel used methane. For both fuel ejection configurations against an oxidizer stream, the flame stability and flame mode were affected mainly by vortex structure near bluff body. In the coflow configuration, air velocity at the flame extinction limit are increased with fuel velocity, which is comparable to the experiment results. Comparing with the isothermal flow field, the reacting flow produces a weak and small recirculation zone, which is result in the reductions of density and momentum due to temperature increase by reaction in the wake zone.

Involvement of leaf characteristics and wettability in retaining air particulate matter from tropical plant species

  • Barima, Yao Sadaiou Sabas;Angaman, Djedoux Maxime;N'gouran, Kobenan Pierre;Koffi, N'guessan Achille;Tra Bi, Fidele Zamble;Samson, Roeland
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.121-131
    • /
    • 2016
  • In most African urban areas, Particulate Matters (PM) concentration exceeds by far the WHO limits. In these areas, plants can play a key role in removing particles. In this study, we evaluated three ornamental species (Jatropha interrigima, Ficus benjamina, Barleria prionitis) used in Abidjan (Ivory Coast). Leaf-encapsulated saturation isothermal remnant magnetisation (SIRM) were measured and the relationship between PM captured and leaf wettability were done. The sampling were performed at roadsides and Parks. Firstly, Leaf-encapsulated and total leaf SIRM were quantified and the wettability was determined by drop contact angles (DCA). Secondly, the relationship between leaf SIRM and wettability was found. Results showed that leaf SIRM was two to ten times higher at roadsides than in Parks. Total leaf SIRM was also higher on mature leaves in Main roads suggesting a particle accumulation in leaves over time especially in waxy species (Ficus benjamina). This species encapsulated other than 20% of total leaf SIRM. All tested species were highly-wettable ($40^{\circ}$ < DCA < $90^{\circ}$). Thus, Jatropha interrigima with its leaf trichomes and F. benjamina with its leaf waxes were more wettable. A significantly positive correlation was found between wettability intensity and leaf SIRM.

Dyeability and functionality of Catechu(Part I) -Characteristics of Catechu and Dyeing properties of Cotton- (아선약의 염색성과 기능성(제1보) -아선약 색소의 특성과 면섬유에 대한 염색성-)

  • Nam, Ki-Yeon;Lee, Jung-Soon
    • Korean Journal of Human Ecology
    • /
    • v.19 no.4
    • /
    • pp.699-707
    • /
    • 2010
  • Catechu is widely used as in natural dyeing as well as in various medicines and tannage. This study investigated the dyeing properties and functionality of Catechu through a series of dyeing experiments using cotton fabric. It was shown that the absorbance of Catechu solution has two peaks at 220nm and 280nm. Thus, it can be concluded that the color constituent of Catechu is a catechol tannin and color tone is YR. The dyeability of Catechu increases as the concentration of the dye is increased. Its variation was shown to be similar to the isothermal absorption curve of the Freundlich. As dyeing time was increases, the dyeability did not change significantly after the 30 minute mark was passed. At high temperatures the dyeability was shown to increase. As the dyeing temperature was increased the color of dyeing fabrics changes from Y and YR to R. Experiments with pre-mordanting method showed that various colors can be obtained using Catechu. Cotton is effective in using K, Cu, Fe mordants, and the dyeability was shown to be improved with low pH. Both washing fastness and light fastness were shown to be low. However, the fabric color gradually changed to red was due to mailard reaction of catechol tannin causing by repeated washing and sunlight. The ultraviolet-cut ability was improved for cotton fabric dyed with Catechu. Also, dyed fabric with Catechu showed very good antimicrobial abilities at 99.9%.

The Improvement of Electrical Characteristics of Inkjet-printed Cu films with Stress Relaxation during Thermal Treatment (잉크젯 프린팅된 Cu 박막의 응력해소를 통한 전기적 특성 개선)

  • Yi, Seol-Min;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.57-62
    • /
    • 2014
  • Using flexible bismaleimide-triazine co-polymer as a substrate, inkjet-printed Cu films were also investigated for low-cost and process feasibility of flexible electronics. After annealing at $200^{\circ}C$ for 1 h under various reducing ambient, surface color was changed to red and electrical resistivity was decreased to the level of conductor under formic acid ambient. However, its resistivity was much higher than conventional copper films due to surface crack. In order to reduce the residual film stress after annealing, additional isothermal treatment was inserted before anneal hiring the stress relaxation applied in processes of amorphous materials. As a result, no surface crack was observed and electrical resistivity of $3.4{\mu}{\Omega}cm$ was measured after annealing at $230^{\circ}C$ with stress relaxation while electrical resistivity of $7.4{\mu}{\Omega}cm$ was observed after normal annealing without relaxation. The effect of stress relaxation was also confirmed by observing surface crack after decreasing the relaxation time to 0 min.

Numerical Study on Comparison of Serpentine and Parallel Flow Channel in High-temperature Proton Exchange Membrane Fuel Cells (고온형 고분자전해질형 연료전지에서의 사형 유로와 평행 유로 성능비교에 대한 수치해석적 연구)

  • AHN, SUNGHA;OH, KYEONGMIN;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • General polymer electrolyte fuel cell (PEMFC) operates at less than $80^{\circ}C$. Therefore liquid phase water resulting from electrochemical reaction accumulates and floods the cell which in turn increases the mass transfer loss. To prevent the flooding, it is common to employ serpentine flow channel, which can efficiently export liquid phase water to the outlet. The major drawback of utilizing serpentine flow channel is the large pressure drop that happens between the inlet and outlet. On the other hand, in the high temperature polymer electrolyte fuel cell (HT-PEMFC), since the operating temperature is 130 to $180^{\circ}C$, the generated water is in the state of gas, so the flooding phenomenon is not taken into consideration. In HT-PEMFCs parallel flow channel with lower pressure drop between the inlet and outlet is employed therefore, in order to circulate hydrogen and air in the cell less pumping power is required. In this study we analyzed HT-PEMFC's different flow channels by parallel computation using previously developed 3-D isothermal model. All the flow channels had an active area of $25cm^2$. Also, we numerically compared the performance of HT-PEMFC parallel flow channel with different manifold area and Rib interval against the original serpentine flow channel. Results of the analysis are shown in the form of three-dimensional contour polarization curves, flow characteristics in the channel, current density distribution in the Membrane, overpotential distribution in the catalyst layer, and hydrogen and oxygen concentration distribution. As a result, the performance of a real area fuel cell was predicted.

The heat transfer and pressure drop characteristics of $CO_2$ during supercritical region in a horizontal tube (초임계 영역에서 수평관내 $CO_2$ 열전달과 압력강하)

  • 이동건;오후규;김영률;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.500-508
    • /
    • 2004
  • The heat transfer coefficients during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, and a gas cooler(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flow meter. The gas cooler is a counterflow heat exchanger by cooled water flowing in the annulus. The $CO_2$ flows in the horizontal stainless steel tube. which is 9.53mm in O.D. and 7.75mm in I.D. The gas cooler is 6 [m] in length. which is divided into 12 subsections, respectively. The experimental conditions considered in the study are following range of variables : refrigerant temperature is between 20 and $100^{\circ}C$. mass fluxes ranged from 200 to 400kg/($m^2$.s), average pressure varied from 7.5 to 10.0MPa. The main results were summarized as follows : The friction factors of $CO_2$ in the gas cooler show a relatively good agreement with those predicted by Blasius' correlation. The local heat transfer coefficient in the gas cooler has compared with most of correlations, which are the famous ones for forced convection heat transfer of turbulent flow. The results show that the local heat transfer coefficient of gas cooler agrees well with the correlation by Bringer-Smith except that at the region near pseudo critical temperature. while that at the near pseudo critical temperature is higher than the correlation.

The Magnetic Characteristics and Microstructure of Mn-A1 System Alloys(1st Report) -Focused on the Mn-A1 Alloys- (Mn-Al계 합금의 열처리에 따른 미세조직 변화와 지기적 특성(제1보) -Mn-Al-Cu 합금을 중심으로-)

  • Pang, Man-Gyu;Yang, Hyun-Soo;Kwak, Chang-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.48-58
    • /
    • 1988
  • This study was undertaken to observe the formation behavior of ferro- magnetic phase in Mn-Al-Cu Alloys. The alloy selected for this investigation was 70% Mn-29% Al-1% Cu. This pre-allyed pig was prepared to the cylinderical castings using an Induction furnace after homogenizing at $1100^{\circ}C$ for 2hr, the specimens were cooled by cooling methods. Subwequent isothermal heat treatments were followed at $550^{\circ}C$ for various periods of time at predetermined(1-1000min). The formation behavior of ferromagnetic phase was investigated by measurements of magnetic properties of the specimens at each stage of heat treatment, and optical microscopic esamination and X-Ray diffraction analyses were also employed. By this basic experimental results, the conclusions are as follows 1) In order to obtain much amount of ferromagnetic phase, the optimum average cooling rate was about 7.35-$16.4^{\circ}C$/sec($1100^{\circ}C$-$600^{\circ}C$). 2) We verified the decomposition of {\tau} phase to {\beta} -Mn and {\gamma} , as the specimens were homogenized at $1100^{\circ}C$ for 12hr, then heat-treased at $550^{\circ}C$ for 1-1000min. 3) A condition of optimum heat treatments in Mn-Al-Cu permanent mag-netic alloys showed that after homogenizing at $1100^{\circ}C$ for 2hr, the speciments were cooled in air or furnace(A) and subsequent heat treatments at $550^{\circ}C$ for 1-30min. The maximum magnetic properties were measured as follows: Air cooling; Br=1200(Gause), bHc=100(oe), (BH)max=0.07(MGOe) Furnace cooling(A);Br=950(Gauss), bhe=80(Oe), (BH)max=0.05(MGOe)

  • PDF

THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth (Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향)

  • Jeong, YoHan;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

A study on photoreflectance in Fe-doped semi-insulating InP (Fe가 첨가된 반절연성 InP에서 Photoreflectance에 관한 연구)

  • 김인수;이정열;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.249-254
    • /
    • 1997
  • We investigated characteristics of Fe-doped semi-insulating InP by means of photoreflectance(PR) measurement. The band gap energy($E_0$) and broadening parameter($\Gamma$) from PR signals at 300K are 1.336 eV and 11.2 meV, respectively. As the temperature is decreased from 300 to 80 K, PR signals are varied from an overlapped shape of exciton and 2-dimensional band gap transitions(300 K) to that of exciton transition(80 K). We calculated Varshni coefficient($\alpha=0.94\pm$0.07 meV/K, $\beta=587\pm$35.2 K) and Bose-Einstein coefficient ($a_B=33.6{\pm}2.02meV$ , $\theta=165\pm$33K). After annealing of isothermal and isochronism crystallinity of InP is found to be excellent when annealed at $300^{\circ}C$ for 10~20 min, qualitatively.

  • PDF

Cure Behavior and Chemorheology of Low Temperature Cure Epoxy Matrix Resin (저온 경화형 에폭시 매트릭스 수지의 경화거동 및 화학유변학에 대한 연구)

  • Na, Hyo Yeol;Yeom, Hyo Yeol;Yoon, Byung Chul;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2014
  • Low temperature cure prepregs are being developed for use in the preparation of large-structured fiber-reinforced polymer (FRP) composites with good performance. Cure behavior and chemorheology of low temperature cure epoxy resin system, based on epoxy resin, curing agent, and accelerators, were investigated to provide a matrix resin suitable for the prepreg preparation. Characteristics of cure reaction were studied in both dynamic and isothermal conditions by means of differential scanning calorimetry and rheometry. The low temperature cure epoxy resin system suggested in this study as a matrix resin was curable at $80^{\circ}C$ for 3 h, and showed the gel times of 120 and 20 min at 80 and $90^{\circ}C$, respectively. Thermal and mechanical properties of the cured sample were almost the same as high temperature cure counterparts.