• Title/Summary/Keyword: Isoleucine metabolism

Search Result 22, Processing Time 0.02 seconds

LC-MS-based metabolomic analysis of serum and livers from red ginseng-fed rats

  • Kim, Hyun-Jin;Cho, Chang-Won;Hwang, Jin-Taek;Son, Nari;Choi, Ji Hea;Shim, Gun-Sub;Han, Chan-Kyu
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.371-378
    • /
    • 2013
  • Serum and liver metabolites in rats fed red ginseng (RG) were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The mass data were analyzed by partial least squares-discriminant analysis (PLS-DA) to discriminate between control and RG groups and identify metabolites contributing to this discrimination. The RG group was clearly separated from the control group on PLS-DA scores plot for serum samples, but not liver samples. The major metabolites contributing to the discrimination included lipid metabolites (lysophosphatidylcholine, acyl-carnitine, and sphingosine), isoleucine, nicotinamide, and corticosterone in the serum; the blood levels of all but isoleucine were reduced by RG administration. Not all metabolites were positively correlated with the health benefits of RG. However, the blood levels of lysophosphatidylcholine, which stimulate various diseases, and long-chain acylcarnitines and corticosterone, which activate the stress response, were reduced by RG, suggesting long-term RG might relieve stress and prevent physiological and biological problems.

Direct Monitoring of Membrane Fatty Acid Changes and Effects on the Isoleucine/Valine Pathways in an ndgR Deletion Mutant of Streptomyces coelicolor

  • Tae-Rim Choi;Suk Jin Oh;Jeong Hyeon Hwang;Hyun Jin Kim;Nara Shin;Jeonghee Yun;Sang-Ho Lee;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.724-735
    • /
    • 2023
  • NdgR, a global regulator in soil-dwelling and antibiotic-producing Streptomyces, is known to regulate branched-chain amino acid metabolism by binding to the upstream region of synthetic genes. However, its numerous and complex roles are not yet fully understood. To more fully reveal the function of NdgR, phospholipid fatty acid (PLFA) analysis with gas chromatography-mass spectrometry (GC-MS) was used to assess the effects of an ndgR deletion mutant of Streptomyces coelicolor. The deletion of ndgR was found to decrease the levels of isoleucine- and leucine-related fatty acids but increase those of valine-related fatty acids. Furthermore, the defects in leucine and isoleucine metabolism caused by the deletion impaired the growth of Streptomyces at low temperatures. Supplementation of leucine and isoleucine, however, could complement this defect under cold shock condition. NdgR was thus shown to be involved in the control of branched-chain amino acids and consequently affected the membrane fatty acid composition in Streptomyces. While isoleucine and valine could be synthesized by the same enzymes (IlvB/N, IlvC, IlvD, and IlvE), ndgR deletion did not affect them in the same way. This suggests that NdgR is involved in the upper isoleucine and valine pathways, or that its control over them differs in some respect.

Study of Synthesis and Biological Function on Aminophosphonic Acids (Aminophosphonic Acids 화합물의 생물학적 기능연구)

  • Kim, Sook-He
    • Journal of Nutrition and Health
    • /
    • v.4 no.4
    • /
    • pp.39-46
    • /
    • 1971
  • Since ${\beta}-aminoethylphosphonic$ acid was discovered in the living organism, the biosynthesis and biological function of aminophosphonic acids have been extensively studied. The purpose of this project consists in the two parts: 1)the preparation of DL-1-amino-2-phenylethylphosphonic acid (Phenylalanine aminophosphonic acid) and DL-1-amino-3-methylbutyl-phosphonic acid (Isoleucine aminophosphonic acid) by the method of Chamber and Isbell. 2) the study of metabolism and biological functions of those synthetic materials by the animal experiment (white rats) The importance of this project proved to be the first experience fed by animals for the elucidation of biochemical and metabolic functions in the animal body. The following organic synthesis of DL-1-amino-3-methylbutylphosphonic acid and DL-1-amino-2-phenylethylphosphonic acid are studied. 1)Synthesis of DL-1-amino-3-methylbutylphosphonic acid a) Synthesis of Iso-butylbromide b) Synthesis of Ethyl iso-butylmalonate c) Synthesis of Iso-caproic acid d) Synthesis of $Ethyl-{\alpha}-bromo$ iso-caproate e) Synthesis of $Triethyl-{\alpha}-phosphono$ iso-caproate f) Synthesis of DL-1-amino-3-methylbutylphosphonic acid 2)Synthesis of DL-1-amino-2-phenylethylphosphonic acid a) Synthesis of Diethyl phosphite b) Synthesis of Ethylchloro acetate c) Synthesis of Triethyl phospho acetate d) Synthesis of Triethyl benzyl phospho acetate e) Synthesis of DL-1-amino-2-phenylethylphosphonic acid The synthetic compounds; DL-1-amino-3-methylbutylphosphonic acid and DL-1-amino-2-phenyl ethylphosphonic acid which are essential amino acid (isoleucine, phenylalanine)analogue are supplemented to the animal diet at the level of 0.2% and 0.4% for isoleucine analogue and 0.35% and 0.7% for phenylalanine analogue. The plain isoleucine and phenylalanine at the same level in the diet are fercilitated as comparable groups in this study. Two sets of experience including 100 male rats were carried out for seven weeks each total 14 weeks. During this period, urine samples, and each big organs were collected for the analysis of total nitrogen, phosphorus, and glycogen contents in the individual samples by Micro Kjeldahl Fisk & Subbarow and Nelson Somogye, method. 1) The result of the project a) The yield of DL-1-amino-3-methylbutylphosphonic acid and DL-1-amino-2-phenylethylphosphonic acid showed low tendency at the level of 12.5% and 20% Melting point of those two compounds were very high and the ${\alpha}-amino$ group in the synthetic compounds showed positive reaction with ninhydrin in the violet color. b) Ail the experimental groups included in this study revealed statistically no significant difference in the organ weight, total body nitrogen retention and urinary phosphorus excretion This means isoleucine aminophosphonic acid and Phenylalanine aminophosphonic acid were utilized in the body as much as the plain amino acids, isoleucine and phenylalanine did. c) The glycogen contents in the liver of the phenylalaine aminophosphonic acid gruop showed higher statistically significant(p<0.05) in the comparision with the group of the Phenylalanine and the Standard-2. It was noteworthy that the higher glycogen content in the liver might indicate the significance in the incorporation of phenylalanine aminophosphonic acid into the intermediate of tricarboxylic acid cycle as activated state.

  • PDF

A Neonate with Alpha-methylacetoacetic Aciduria Identified by Newborn Screening (신생아 스크리닝으로 진단된 Alpha-methylacetoacetic Aciduria 증례)

  • Lee, Beom Hee;Kim, Yoo-Mi;Kim, Jae-Min;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.2
    • /
    • pp.104-107
    • /
    • 2012
  • Alpha-methylacetoacetic aciduria is a rare inborn metabolic disorder, caused by acetyl-CoA acetyltransferase-1 deficiency. This enzyme acts on the last step of isoleucine metabolism. It dissociates 2-Methyl-3-Hydroxybutyryl-CoA into propionyl-CoA and acetyl-CoA. ACAT1 is the causative gene. Most patients manifest recurrent ketotic metabolic acidosis, but some patients can be identified in their presymptomatic period by newborn screening. Urinary organic acid profile is characterized by increased amounts of 2-Methyl-3-Hydroxybutyric acid, tiglylglycine, and 2-methyl acetoacetic acid. In this report, a Korean patient with alpha-methylacetoacetic aciduria is described. This is the first Korean case report confirmed by genetic testing.

  • PDF

Liver metabolic perturbations of heat-stressed lactating dairy cows

  • Fan, Caiyun;Su, Di;Tian, He;Li, Xiaojiao;Li, Yu;Ran, Lei;Hu, Ruiting;Cheng, Jianbo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1244-1251
    • /
    • 2018
  • Objective: The objective of the present study was to elucidate the mechanism underlying liver metabolic perturbations in dairy cows exposed to heat stress (HS). Methods: Liquid chromatography massabl spectrometry was used to analyze metabolic differences in livers of 20 dairy cows, with and without exposure to HS. Results: The results revealed 33 potential metabolite candidate biomarkers for the detection of HS in dairy cows. Fifteen of these metabolites (glucose, lactate, pyruvate, acetoacetate, ${\beta}$-hydroxybutyrate, fumaric acid, citric acid, choline, glycine, proline, isoleucine, leucine, urea, creatinine, and orotic acid) were previously found to be potential biomarkers of HS in plasma or milk, discriminating dairy cows with and without HS. Conclusion: All the potential diagnostic biomarkers were involved in glycolysis, amino acid, ketone, tricarboxylic acid, or nucleotide metabolism, indicating that HS mainly affected energy and nucleotide metabolism in lactating dairy cows.

Photochromism of Phytochromes and Cph1 Requires Critical Amino Acids and Secondary Structure in the N-Terminal Domain

  • Seo Hak-Soo;Bhoo Seong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1441-1447
    • /
    • 2006
  • The light perception and phototransformation of phytochromes are the first process of the phytochrome-mediated light signal transduction. The chromophore ligation and its photochromism of various site-specific and deletion mutants of pea phytochrome A and bacterial phytochrome-like protein (Cph1) were analyzed in vitro. Serial truncation mutants from the N-terminus and C-terminus indicated that the minimal N-terminal domain for the chromophore ligation spans from the residue 78 to 399 of pea phytochrome A. Site-specific mutants indicated that several residues are critical for the chromophore ligation and/or photochromism. Histidine-324 appears to serve as an anchimeric residue for photochromism through its H-bonding function. Isoleucine-80 and arginine-383 playa critical role for the chromophore ligation and photochromism. Arginine-383 is presumably involved in the stabilization of the Pfr form of pea phytochrome A. Apparently, the amphiphilic ${\alpha}$-helix centered around the residue-391 is in the chromophore pocket and critical for the chromophore ligation.

Regulation of Branched-Chain, and Sulfur-Containing Amino Acid Metabolism by Glutathione during Ultradian Metabolic Oscillation of Saccharomyces cerevisiae

  • Sohn Ho- Yong;Kum Eun-Joo;Kwon Gi-Seok;Jin Ingnyol;Kuriyama Hiroshi
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.375-380
    • /
    • 2005
  • Autonomous ultradian metabolic oscillation (T$\simeq$50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by $H_2S$ burst pro-duction. As the production of $H_2S$ in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intra-cellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscil-late with the same periods of dissolved $O_2$ oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 $\mu$M) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous $H_2S$production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of $H_2S$. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved $O_2$ NAD(P)H redox oscillations without burst $H_2S$ production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and $H_2S$ generation, rather than with direct GSH-GSSG redox control.

Multiomics analyses of Jining Grey goat and Boer goat reveal genomic regions associated with fatty acid and amino acid metabolism and muscle development

  • Zhaohua Liu;Xiuwen Tan;Qing Jin;Wangtao Zhan;Gang Liu;Xukui Cui;Jianying Wang;Xianfeng Meng;Rongsheng Zhu;Ke Wang
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.982-992
    • /
    • 2024
  • Objective: Jining Grey goat is a local Chinese goat breed that is well known for its high fertility and excellent meat quality but shows low meat production performance. Numerous studies have focused on revealing the genetic mechanism of its high fertility, but its highlighting meat quality and muscle growth mechanism still need to be studied. Methods: In this research, an integrative analysis of the genomics and transcriptomics of Jining Grey goats compared with Boer goats was performed to identify candidate genes and pathways related to the mechanisms of meat quality and muscle development. Results: Our results overlap among five genes (ABHD2, FN1, PGM2L1, PRKAG3, RAVER2) and detected a set of candidate genes associated with fatty acid metabolism (PRKAG3, HADHB, FASN, ACADM), amino acid metabolism (KMT2C, PLOD3, NSD2, SETDB1, STT3B, MAN1A2, BCKDHB, NAT8L, P4HA3) and muscle development (MSTN, PPARGC1A, ANKRD2). Several pathways have also been detected, such as the FoxO signaling pathway and Apelin signaling pathway that play roles in lipid metabolism, lysine degradation, N-glycan biosynthesis, valine, leucine and isoleucine degradation that involving with amino acid metabolism. Conclusion: The comparative genomic and transcriptomic analysis of Jining Grey goat and Boer goat revealed the mechanisms underlying the meat quality and meat productive performance of goats. These results provide valuable information for future breeding of goats.

Effects of dietary protein of hog hair on the nutrients metabolism in poultry (돈모 단백질의 급여가 닭의 영양소 대사에 미치는 영향)

  • Oh, Hyun-Min;Park, Noh-Sung;Jo, Chi-Hyun;Kim, Sung-Bok;Lim, Jae-Sam;Lee, Bong-Duk;Lee, Soo-Kee
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.651-657
    • /
    • 2011
  • Two experiments were conducted to investigate the effect of feeding hog hair protein (HHP) on the nutritional value for poultry. In experiment 1, twenty roosters of Hanhyup-3 strain were alloted, and metabolizability of HHAA was measured. In experiment 2, forty roosters of Hanhyup-3 strain were alloted to 0, 3, 7.6 and 15.1% of HHAA treatments, 10 birds per treatment, and measured feed utilization and blood parameters. In experiment 1, no trend was found in excretion of amino acid, high in glysine and glutelin, low in valine, threonine, and methionine. HHAA metabolizability of serine, phenylalanine, alanine, and isoleucine was more higher than that of lysine, cystine, asparagine, and tyrosine. In experiment 2, as the HHAA level increased, feed intake decreased significantly in 15.1% treatment, but water intake increased significantly in 15.1% traetment. Dry matter and nitrogen metabolizability decreased in 7.6 and 15.1% treatments. Although no significant difference was found among three treatments(0, 3, and 5.7%), as the HHAA level increased, dry matter and nitrogen metabolizability decreased. Serum creatinine level was significantly increased in 15.1% treatment. In conclusion, it is considered that proper level to substitute soybean meal by HHAA was 10%.

Simulation of the Effect of Protein Quality at the Different Protein Intake Level on Protein Metabolism (각기 다른 단백질섭취 수준에서 본 식이단백질의 질이 단백질대사에 미치는 영향 -Simulation Model을 이용하여-)

  • 이옥희
    • Journal of Nutrition and Health
    • /
    • v.26 no.9
    • /
    • pp.1033-1048
    • /
    • 1993
  • This study was designed to describe the effect of the protein quality at different intake level of protein on the protein metabolism in the whole body of growing pigs with a simulation model. Varying to the protein level in feeds, four simulations were conducted. The feed protein level, represented as proportions of digestible protein to the metabolic energy (DP/ME, g/MJ), were 6-8, 11-13, 17-19, and 23-25 DP/ME, respectively. Two protein quality and six weeks of growth time were used at each simulation. The objective function for the simulations was protein deposition in the whole body, which was calculated from the experimental results. The parameters in the simulation were determined by the parameter estimation technique. The results obtained from the simulation were as follows: The protein synthesis and breakdown rates(g/day) in the whole body was increased with the increase of protein quality only at lower or required level of protein intake. They showed a parallel behavior in the course of growth, irrespective of quality and level of feed protein intake. The simulated protein deposition and protein synthesis showed a linear relationship between them at different protein quality and level. The affinity parameter showed a linear relationship between them at different protein quality and level. The affinity parameter showed that arginine, tryptophan and isoleucine were more efficient in the stimulation ofbody protein synthesis. Lysine and phenylalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, pheyalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, phenyalanine+tyrosine, and methionine+cystine were oxidized in larger magnitude than lysine and threonine. The oxidation parameter of most amino acids increased with the increase of protein intake beyond the requirement level, but not any more at highest protein intake level. Finally it was found that the improvement of feed protein quality at the lower or required level of protein intake increase protein deposition through a parallel increase of protein synthesis and breakdown.

  • PDF