Browse > Article

Photochromism of Phytochromes and Cph1 Requires Critical Amino Acids and Secondary Structure in the N-Terminal Domain  

Seo Hak-Soo (Department of Plant Science, Seoul National University)
Bhoo Seong-Hee (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.9, 2006 , pp. 1441-1447 More about this Journal
Abstract
The light perception and phototransformation of phytochromes are the first process of the phytochrome-mediated light signal transduction. The chromophore ligation and its photochromism of various site-specific and deletion mutants of pea phytochrome A and bacterial phytochrome-like protein (Cph1) were analyzed in vitro. Serial truncation mutants from the N-terminus and C-terminus indicated that the minimal N-terminal domain for the chromophore ligation spans from the residue 78 to 399 of pea phytochrome A. Site-specific mutants indicated that several residues are critical for the chromophore ligation and/or photochromism. Histidine-324 appears to serve as an anchimeric residue for photochromism through its H-bonding function. Isoleucine-80 and arginine-383 playa critical role for the chromophore ligation and photochromism. Arginine-383 is presumably involved in the stabilization of the Pfr form of pea phytochrome A. Apparently, the amphiphilic ${\alpha}$-helix centered around the residue-391 is in the chromophore pocket and critical for the chromophore ligation.
Keywords
Phytochromes; photochromism; chromophore; zinc-blot; Cph1;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Abe, H., H. Handa, Y. Hogi, and T. Fukazawa. 1991. Efficient usage of a galactose-inducible expression vector for the production of heterologous protein in yeast. Agric. Biol. Chem. 52: 2035-2041
2 Braslavsky, S. E., D. Schneider, K. Heihoff, S. Nonell, P. F. Aramendia, and K. Schaffher. 1991. Phytochrome models. II. Photophysics and photochemistry of phycocyanobilin dimethyl ester J. Am. Chem. Soc. 113: 7322-7334   DOI
3 Farrens, D. L., R. E. Holt, B. N. Rospendowski, P.-S. Song, and T. M. Cotton. 1989. Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 2. Phytochromes and phycocyanin chromophores. J. Am. Chem. Soc. 111: 9162-9169   DOI
4 Manabe, K. and M. Nakazawa. 1997. The structure and function of phytochrome A: The roles of the entire molecule and of its various parts. J. Plant Res. 110: 109-122   DOI   ScienceOn
5 Parks, B. M. and P. H. Quail. 1991. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3: 1177-1186   DOI   ScienceOn
6 Wagner, J. R., J. S. Brunzelle, K..T. Forest, and R. D. Vierstra. 2005. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438:325-331   DOI   ScienceOn
7 Yeh, K.-C, S.-H. Wu, J. T. Murphy, and J. C. Lagarias. 1997. A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505-1508   DOI   ScienceOn
8 Crofts, A. R. 1987-1992. SEQANAL Package, Univ. of Illinois, Available from the Biotechnology Center, Univ. of Illinois, 901 S. Mathews, Urbana, IL 61801
9 Cherry, J. R., D. Hondred, J. M. Walker, and R. D. Vierstra. 1992. Phytochrome requires the 6-kDa N-terminal domain for full biological activity. Proc. Natl. Acad. Sci. USA 89: 991-999
10 Deforce, L., K. Tomizawa, N. Ito, D. Farrens, P.-S. Song, and M. Furuya. 1991. In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin. Proc. Natl. Acad. Sci. USA 88: 10392-10396
11 Kim, J.-H., H.-J. Kang, E.-S. Kim, J.-H. Kim, and Y.-M. Koo. 2004. One-step purification of poly-His tagged Penicillin G acylase expressed in E. coll J. Microbiol. Biotechnol. 14: 231-236
12 Berkelman, T. R. and J. C. Lagarias. 1985. Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal. Biochem. 156: 194-201   DOI   ScienceOn
13 Cornejo, J., S. I. Beale, M. J. Terry, and J. C. Lagarias. 1992. Phytochrome assembly. The structure and biological activity of 2(R), 3(E)-phytochromobilin derived from phycobiliproteins. J. Biol. Chem. 267: 14790-14798
14 Borde, D. and P. Argos. 1991. Suggestion for 'Safe' residue substitutions in site-directed mutagenesis. J. Mol. Biol. 217: 721-729   DOI
15 Bhoo, S. H., T. Hirano, H.-Y. Jeong, J.-G. Lee, M. Furuya, and P.-S. Song. 1997. Phytochrome photochromism probed by site-directed mutations and chromophore esterification. J. Am. Chem. Soc. 119: 11717-11718   DOI   ScienceOn
16 Li, L. and J. C. Lagarias. 1992. Phytochrome assembly: Defining chromophore structure requirements for covalent attachment and photoreversibility. J. Biol. Chem. 267: 19204-19210
17 Rudiger, W., F. Thummler, E. Cmiel, and S. Schneider. 1983. Chromophore structure of the physiologically active form (Pfr) of phytochrome. Proc. Natl. Acad. Sci. USA 80: 6244-6248
18 Kaneko,T., S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, and S. Sasamoto. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synecocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3: 109-136   DOI
19 Kim, S.-Y. and J.-Y. Cho. 2005. A modified PCR-directed gene replacements method using ${\lambda}$-red recombination functions mE. coli. J. Microbiol. Biotechnol. 15: 1346-1354   과학기술학회마을
20 Kang, S.-G., S.-K. Kang, D.-Y. Lee, Y.-H. Park, W.-S. Hwang, and H.-S. Yoo. 2004. Cloning, sequencing and expression of cDNA encoding bovine prion protein. J. Microbiol. Biotechnol 14: 417-421
21 Tomizawa, K., N. Ito, Y. Komeda, T. Q. P. Uyeda, K. Takio, and M. Furuya. 1991. Characterization and intracellular distribution of pea phytochrome I polypeptides expressed in E. coli. Plant Cell Physiol. 32: 95-102
22 Furuya, M. and P.-S. Song. 1994. Assembly and properties of holophytochrome, pp. 105-140. In Kendrick, R. E. and G H. M. Kronenberg (eds.). Photomorphogenesis in Plants, 2nd Ed. Kluwer, Dordrecht, The Netherlands
23 Deforce, L., M. Furuya, and P.-S. Song. 1993. Mutational analysis of the pea phytochrome A chromophore pocket: Chromophore assembly with apophytochrome A and photoreversibility. Biochemistry 32: 14165-14172   DOI   ScienceOn
24 Lagarias, J. C. and D. M. Lagarias. 1989. Self-assembly of synthetic phytochrome holoprotein in vitro. Proc. Natl. Acad. Sci. USA 86: 5778-5780
25 Hughes, J., T. Lamparter, F. Mittmann, E. Hartmann, W. Gartner, A. Wilde, and T. Borner. 1997. A prokaryotic phytochrome. Nature 386: 663   DOI
26 Braslavsky, S. E. 1984. The photophysics and photochemistry of the plant photosensor-pigment phytochrome. Pure Appl. Chem. 56: 1153-1165   DOI   ScienceOn
27 Cherry, J. R., D. Hondred, J. M. Walker, J. M. Keller, H. Hershey, and R. D. Vierstra. 1993. Carboxyl-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity. Plant Cell 5: 565-575   DOI   ScienceOn
28 Fodor, S. P. A., J. C. Lagarias, and R. A. Mathies. 1990. Resonance Raman analysis of the Pr and Pfr forms of phytochrome. Biochemistry 29: 11141-11146   DOI   ScienceOn