• Title/Summary/Keyword: Isolation System

Search Result 1,762, Processing Time 0.026 seconds

Application of Mid-Story Isolation System for Reducing Seismic Response of Space Structure (공간구조물의 지진응답 저감을 위한 중간면진장치의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won;Kim, Hyung-Man
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.97-103
    • /
    • 2009
  • The seismic isolation system reduces the seismic vibration that is transmitted from foundation to upper structure. This seismic isolation system can be classified into base isolation and mid-story isolation by the installation location. In this study, the seismic behavior of arch structure with mid-story isolation is analyzed to verify the effect of seismic isolation. Mid-story isolation is more effective than base isolation to reduce the seismic responses of roof structure. Also, this isolation would be excellent in structural characteristics and construction.

  • PDF

A Study on Base Isolation Performance of Magneto-Sensitive Rubbers (자기민감 고무를 이용한 구조물의 면진성능 연구)

  • Hwang In-Ho;Lim Jong-Hyuk;Lee Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.437-444
    • /
    • 2006
  • Recently, as large structures become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, a base isolation system using Magneto-Sensitive(MS) rubbers is proposed and shown to effectively protect structures against earthquakes. The MS Rubber is a class of smart controllable materials whose mechanical properties change instantly by the application of a magnetic field To demonstrate the advantages of this approach, the MS Rubber isolation system is compared to Lead-Rubber Bearing(LRB) isolation systems and judged based on computed responses to several historical earthquakes. The MS Rubber isolation system is shown to achieve notable decreases in base drifts over comparable passive systems with no accompanying increase in base shears or in accelerations imparted to the superstructure.

  • PDF

An Experimental Study of the Seismic Isolation Systems for Equipment Isolation : EPS (기기면진을 위한 면진장치의 거동분석실험 (I) : FPS 거동분석)

  • 전영선;김민규;최인길;김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.403-410
    • /
    • 2003
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. For this purpose, shaking table tests were performed. The isolation system, known as Friction Pendulum System (FPS), combines the concepts of sliding bearings and pendulum motion was selected. Peak ground acceleration, bidirectional motion, effect of vertical motion and frequency contents of selected earthquake motions were considered. Finally, it is presented that the FPS systems are effective for the small equipment isolation. Key word equipment isolation, nuclear containment, shaking table test, Friction Pendulum System (FPS)

  • PDF

전자기력을 이용한 능동제진

  • 손규태;유원희;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.179-183
    • /
    • 2001
  • Vibration isolation of mechanical systems, in general is achieved through either passive or active vibration control system. Although passive vibration isolators offer simple and reliable means to protect mechanical system from vibration environment, passive vibration isolator has inherent performance limitation. Whereas, active vibration isolator provide significantly superior vibration-isolation performance. Recently, many studied and applications are carried out in this field. In this study, vibration-isolation characteristics of active vibration control system using electromagnetic force actuator are investigated. Some control algorithms. Optimal Feedforward are used for active vibration isolation. Form the experimental results of each control algorithms, active vibration isolation characteristics are investigated.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

Analysis of Seismic Response According to Installation Location of Seismic Isolation System Applied to High-Rise Building (고층 건물에 적용한 면진 시스템의 설치 위치에 따른 지진 응답 분석)

  • Kim, Min-Ju;Kim, Dong-Uk;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.81-88
    • /
    • 2018
  • Seismic isolation systems have typically been used in the form of base seams in mid-rise and low-rise buildings. In the case of high-rise buildings, it is difficult to apply the base isolation. In this study, the seismic response was analyzed by changing the installation position of the seismic isolation device in 3D high - rise model. To do this, we used 30-story and 40-story 3D buildings as example structures. Historic earthquakes such as Mexico (1985), Northridge (1994) and Rome Frieta (1989) were applied as earthquake loads. The installation position of the isolation device was changed from floor to floor to floor. The maximum deformation of the seismic isolation system was analyzed and the maximum interlaminar strain and maximum absolute acceleration were analyzed by comparing the LB model with seismic isolation device and the Fixed model, which is the base model without seismic isolation device. If an isolation device is installed on the lower layer, it is most effective in response reduction, but since the structure may become unstable, it is effective to apply it to an effective high-level part. Therefore, engineers must consider both structural efficiency and safety when designing a mid-level isolation system for high-rise buildings.

Application of Hybrid Seismic Isolation System to Realize High Seismic Performance for Low-rise Lightweight Buildings (저층 경량건물의 고성능 내진을 위한 복합면진시스템의 적용)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.4 no.2
    • /
    • pp.185-192
    • /
    • 2013
  • This study presents application effects of hybrid seismic isolation system to realize high seismic performance for low-rise lightweight buildings through a non-linear analysis and onsite experiments. The complex seismic isolation system applied in this study is a method of mixing sliding bearing and laminated rubber bearing in order to overcome limitation of laminated rubber bearing in increasing natural period of the whole seismic isolation system. As a result of the non-linear analysis, seismic isolation buildings designed with complex seismic isolation system are safe because its maximum response displacement is within allowable design displacement even for a strong earthquake which rarely occurs and its maximum response shear is less than design seismic force. As a result of the onsite experiment, the rigidity of seismic isolation stories corresponds to approximately 95.8% of the design equivalent stiffness value. This indicates that actual properties of the whole seismic isolation system correspond to design values.

Performance Evaluation of Vibration Control of a Smart Top-Story Isolation System (스마트 최상층 면진시스템의 진동제어 성능평가)

  • Kang, Joo-Won;Kim, Tae-Ho;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.49-56
    • /
    • 2010
  • In this study, the control performance of a smart top-story isolation system for tall buildings subjected to wind excitation was investigated. To this end, a 77-story tall building structure was employed and wind loads obtained from wind tunnel test were used for numerical simulations. The top-story of an example structure is separated from the main structure by a smart base isolation system composed of friction pendulum systems (FPS) and MR dampers. The primary purpose of the smart top-story isolation system is to mitigate the dynamic responses of the main structure, but the excessive movement of the isolated top story may cause the unstableness of the building structure. Therefore, the skyhook control algorithm was used to effectively reduce both responses of the isolated top story and the main structure. The control performance of the proposed smart top-story isolation system was investigated in comparison with that of the passive top-story isolation system. It has been shown from numerical simulation results that the smart top-story isolation system can effectively reduce wind-induced responses of the example building structure compared to the passive top-story isolation system with reduction of the top-story movement.

  • PDF

Modeling of triple concave friction pendulum bearings for seismic isolation of buildings

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.315-334
    • /
    • 2011
  • Seismic isolated building structures are examined in this study. The triple concave friction pendulum (TCFP) is used as a seismic isolation system which is easy to be manufactured and enduring more than traditional seismic isolation systems. In the TCFP, take advantage of weight which pendulum carrying and it's geometry in order to obtain desirable result of seismic isolation systems. These systems offer advantage to buildings which subject to severe earthquake. This is result of damping force of earthquake by means of their internal constructions, which consists of multiple surfaces. As the combinations of surfaces upon which sliding is occurring change, the stiffness and effective friction change accordingly. Additionally, the mentioned the TCFP is modeled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. A two dimensional- and eight- story of a building with and without isolation system are used in the time history analysis in order to investigate of the effectiveness of the seismic isolation systems on the buildings. Results are compared with each other to emphasize efficiency of the TCFP as a seismic isolation device against the other friction type isolation system like single and double concave surfaces. The values of the acceleration, floor displacement and isolator displacement obtained from the results by using different types of the isolation bearings are compared each other. As a result, the findings show that the TCFP bearings are more effective devices for isolation of the buildings against severe earthquakes.

Design and Verification of a Large Reverberation Chamber's Isolation System (대형 잔향실의 방진 구조 설계 및 검증시험)

  • 김홍배;이득웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1066-1074
    • /
    • 2004
  • A vibration isolation system for a large reverberation chamber (1,228 $m^3$ and 1,000 ton) has been installed and verified. The reverberation chamber generates loud noise and induces high level of vibration while performing spacecraft acoustic reliability tests. The isolation system prevents vibration transfer from the chamber to the enclosure buildings. This paper describes design process and commissioning experiments of the system. Design criteria have been derived from rigid body model of the chamber. The stiffness of neoprene pads has been selected by employing finite element analysis of the reverberant chamber and isolation system. A total of 21 neoprene pads have been installed between the chamber and supporting Pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. While 136.9 dB noise is generated in the chamber, absolute transmissibility of the isolation system has been measured. The measured natural frequency of the chamber is 10.2Hz, which is 80% of the predicted value. Overall transmissibility at working frequency range (25∼10.000 Hz) is less than -12.4 dB.