• 제목/요약/키워드: Isolated word recognition

검색결과 134건 처리시간 0.027초

상태의 고유시간 정보를 포함하는 Hidden Markov Model (Hidden Markov Models Containing Durational Information of States)

  • 조정호;홍재근;김수중
    • 대한전자공학회논문지
    • /
    • 제27권4호
    • /
    • pp.636-644
    • /
    • 1990
  • Hidden Markov models(HMM's) have been known to be useful representation for speech signal and are used in a wide variety of speech systems. For speech recognition applications, it is desirable to incorporate durational information of states in model which correspond to phonetic duration of speech segments. In this paper we propose duration-dependent HMM's that include durational information of states appropriately for the left-to-right model. Reestimation formulae for the parameters of the proposed model are derived and their convergence is verified. Finally, the performance of the proposed models is verified by applying to an isolated word, speaker independent speech recognition system.

  • PDF

웨이브렛 변환을 이용한 음성신호의 끝점검출 (Endpoint Detection of Speech Signal Using Wavelet Transform)

  • 석종원;배건성
    • 한국음향학회지
    • /
    • 제18권6호
    • /
    • pp.57-64
    • /
    • 1999
  • 본 논문에서는 잡음이 포함된 음성의 시작점과 끝점을 효율적으로 검출할 수 있는 알고리듬에 대하여 연구하였다. 이를 위해, 웨이브렛 영역에서의 에너지 분포를 고려함으로써 잡음환경하에서도 음성을 검출할 수 있는 새로운 검출 파라미터를 제안하였다. 제안된 끝점검출 파라미터는 웨이브렛 영역에서 세 번째 coarsed 스케일의 표준편차와 가중치를 곱한 첫 번째 detailed 스케일의 표준편차의 합으로 정의하였다. 제안된 끝점검출기의 성능평가를 위해서 다양한 SNR에서 기존방식과 비교하여 시작점과 끝점의 정확도 실험을 수행하였고 HMM 음성인식시스템을 이용하여 인식실험도 수행하였다.

  • PDF

다층퍼셉트론의 강하 학습을 위한 최적 학습률 (Optimal Learning Rates in Gradient Descent Training of Multilayer Perceptrons)

  • 오상훈
    • 한국콘텐츠학회논문지
    • /
    • 제4권3호
    • /
    • pp.99-105
    • /
    • 2004
  • 이 논문은 다층퍼셉트론의 학습을 빠르게 하기 위한 최적 학습률을 제안한다. 이 학습률은 한 뉴런에 연결된 가중치들에 대한 학습률과, 중간층에 가상의 목표값을 설정하기 위한 학습률로 나타난다. 그 결과, 중간층 가중치의 최적 학습률은 가상의 중간층 목표값 할당 성분과 중간층 오차함수를 최소화 시키고자하는 성분의 곱으로 나타난다. 제안한 방법은 고립단어인식과 필기체 숫자 인식 문제의 시뮬레이션으로 효용성을 확인하였다.

  • PDF

Homogeneous Centroid Neural Network에 의한 Tied Mixture HMM의 군집화 (Clustering In Tied Mixture HMM Using Homogeneous Centroid Neural Network)

  • 박동철;김우성
    • 한국통신학회논문지
    • /
    • 제31권9C호
    • /
    • pp.853-858
    • /
    • 2006
  • 음성인식에서 TMHMM(Tied Mixture Hidden Markov Model)은 자유 매개변수의 수를 감소시키기 위한 좋은 접근이지만, GPDF(Gaussian Probability Density Function) 군집화 오류에 의해 음성인식의 오류를 발생시켰다. 본 논문은 TMHMM에서 발생하는 군집화 오류를 최소화하기 위하여 HCNN(Homogeneous Centroid Neural Network) 군집화 알고리즘을 제안한다. 제안된 알고리즘은 CNN(Centroid Neural Network)을 TMHMM상의 음향 특징벡터에 활용하였으며, 다른 상태에 소속된 확률밀도가 서로 겹쳐진 형태의 이질군집 지역에 더 많은 코드벡터를 할당하기 위해서 본 논문에서 새로 제안이 제안되는 이질성 거리척도를 사용 하였다. 제안된 알고리즘을 한국어 고립 숫자단어의 인식문제에 적용한 결과, 기존 K-means 알고리즘이나 CNN보다 각각 14.63%, 9,39%의 오인식률의 감소를 얻을 수 있었다.

잡음에 강한 음성 인식을 위한 성문 가중 켑스트럼에 관한 연구 (Glottal Weighted Cepstrum for Robust Speech Recognition)

  • 전선도;강철호
    • 한국음향학회지
    • /
    • 제18권5호
    • /
    • pp.78-82
    • /
    • 1999
  • 본 연구는 잡음에 강한 음성 파라미터로써 널리 사용하는 가중 켑스트럼에 관한 연구이다. 특히 청각 모델인 PLP(Perceptual Linear Predictive)에서 켑스트럼을 추출 후 비대칭형 성문 펄스 파형 형태를 가중치 함수로 사용하는 방법을 제안한다. 또한 이러한 가중 켑스트럼을 성도 모델에서의 성도파형과 켑스트럼과 연관하여 분석하였다. 그리고 청각 모델인 PLP의 켑스트럼에 가중시켜 청각 모델과 성도 모델을 모두 적용한 음성 파라미터를 얻었다. 이러한 방법의 성능 평가를 위해 차량내 잡음과 길거리에서의 잡음 환경에서의 고립 단어 인식 실험을 하였다. 그리고 기존의 LP(Linear Prediction)에 의한 가중된 윈도우 켑스트럼 및 PLP에 의한 가중된 Liftering 켑스트럼 등과 비교하였다. 모의 실험 결과는 기존의 가중된 cepstrum 보다 제안하는 성문 가중 켑스트럼이 보다 높은 인식율을 보여준다.

  • PDF

천이 제한 HMM을 이용한 잡음 환경에서의 음성 인식 (Speech Recognition in Noisy environment using Transition Constrained HMM)

  • 김원구;신원호;윤대희
    • 한국음향학회지
    • /
    • 제15권2호
    • /
    • pp.85-89
    • /
    • 1996
  • 본 논문에서는 상태간의 천이가 특정한 시간 구간에서만 발생하도록 하는 천이 제한(transition constrained) HMM를 제안하고 잡음 환경에서의 성능을 평가하였다. 천이 제한 HMM는 상태 지속을 제한하고 음성 신호의 시간적 변화를 단순하고 효과적으로 표현할 수 있다. 제안된 천이 제한 HMM은 기존 HMM 보다 성능이 우수할 뿐만아니라 계산량도 매우 감소한다. 제안된 방법의 성능을 평가하기 위하여 반연속(semi-continuous) HMM을 이용하여 잡음이 SNR 20, 10, 0 dB로 첨가된 음성에 화자독립 단독음 인식실험을 수행하였다. 실험 결과에서 제안된 방법은 잡음에 강인한 특성을 나타내었다. 두 가지 종류의 잡음을 SNR 10dB로 첨가하여 사용한 경우, 천이제한 HMM의 인식률은 기존 HMM의 단어 인식률 81.08%와 75.36%에 비하여 각각 7.31%와 10.35% 향상되었다.

  • PDF

전체 경로 제한 조건을 갖는 HMM을 이용한 단독음 인식 (HMM with Global Path constraint in Viterbi Decoding for Insolated Word Recognition)

  • 김원구;안동순;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • 제13권1E호
    • /
    • pp.11-19
    • /
    • 1994
  • 상태 지속 밀도를 사용하는 hidden Markov Models(HMM/SD)은 음성 신호의 시간적인 변화를 보다 명확하게 나타낼 수 있다 그러나 상태 지속 밀도가 완만하거나 제한된 상태가 길면 이러한 장점은 감소된다. 이러한 문제점을 해결하기 위하여, 본 논문에서는 상태간의 천이가 특정한 시간 구간에서만 발생하도록 하는 전에 경로 제한 조건을 갖는 HMM/GPC를 제한한다. HMM/GPC는 상태 지속을 제한하고 음성 신호의 시간적 변화를 단순하고 효과적으로 표현할 수 있다. 또한 HMM/SD와 HMM/GPC를 결합한 새로운 형태의 HMM/SD+GPC를 제안하고 성능을 비교하였다. HMM/GPC는 기존 Viterbi 알고리즘을 약간 수정하여 구현될 수 있다. HMM/GPC와 HMM/SD+GPC는 기존 HMM과 HMM/SD에 비하여 우수한 성능을 보일 뿐만아니라 계산량도 매우 작다. 화자도립 단독음 인식 실험에서, HMM/GPC(1.6%)의 최소 오차는 기존 HMM보다 1.1% 낮았고 계산량도 57% 감소하였다.

  • PDF

이산분포 HMM을 이용한 음성인식에서의 코드워드 Tying 알고리즘 (A Codeword Tying Algorithm in Speech Recognition based on Discrete Hidden Markov Model)

  • 김도영;김남수;은종관
    • 한국음향학회지
    • /
    • 제13권3호
    • /
    • pp.63-70
    • /
    • 1994
  • 본 논문에서는 수형구조 분류기를 이 용한 코드워드 tying 알고리즘을 제안한다. 코드워드와 상태간의 통계적 특성을 이용한 일종의 soft decision 방식이라고도 볼 수 있는 제안된 알고리즘은 빠른 트리 구성과 유일한 최적의 해를 제공하는 특징이 있다. 또한, 이산분포 hidden Markov model(HMM)을 이용한 인식 시스템에 쉽게 적용이 가능하다는 장점을 가진다. 제안된 알고리즘의 성능 평가를 위한 화자독립 격리단어 인식실험에서 코드북 크기가 256과 512일 경우에 대해 각각 $6\%$, $9\%$의 오차를 감소시켰으며, HMM 파라미터도 $20\%$ 정도 줄임을 확인하였다.

  • PDF

히스토그램 처리방법에 의한 잡음 스펙트럼 추정을 이용한 잡음환경에서의 음성인식 (Speech Recognition in Noisy Environments using the NOise Spectrum Estimation based on the Histogram Technique)

  • 권영욱;김형순
    • 한국음향학회지
    • /
    • 제16권5호
    • /
    • pp.68-75
    • /
    • 1997
  • 스펙트럼 차감법은 잡음이 더해진 환경에서의 음성인시기에 널리 사용되는 전처리 방법이지만, 이를 위해서는 잡음의 스펙트럼을 잘 추정할 필요가 있다. 본 논문에서는 잡음 스펙트럼의 추정방법으로 히스토그램 처리방법을 사용한다. 이 방법은 음성/비음성 구간의 구분을 할 필요가 없으며 서서히 변화하는 잡음의 스펙트럼도 추정할 수 있다는 점에서 여타의 잡음 추정방법에 비해 장점을 지닌다. 다양한 SNR 조건하에서 유색 가우시안 잡음 및 실제 자동차 소음을 부가시킨 음성에 대해 화자독립 고립단어 인식 실험을 수행한 결과, 히스토그램 처리방법에 기반을 둔 스펙트럼 차감법의 인식성능이 초기 비음성구간의 스펙트럼 평균을 이용한 기존의 잡음 스펙트럼 추정방법에 비해 우수한 성능을 나타내었다.

  • PDF

주파수 와핑을 이용한 감정에 강인한 음성 인식 학습 방법 (A Training Method for Emotionally Robust Speech Recognition using Frequency Warping)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.528-533
    • /
    • 2010
  • 본 논문에서는 인간의 감정 변화의 영향을 적게 받는 음성 인식 시스템의 학습 방법에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 신호와 음성 인식 시스템의 성능에 미치는 영향에 관한 연구를 수행하였다. 감정이 포함되지 않은 평상의 음성으로 학습된 음성 인식 시스템에 감정이 포함된 인식 데이터가 입력되는 경우 감정에 따른 음성의 차이가 인식 시스템의 성능을 저하시킨다. 본 연구에서는 감정의 변화에 따라 화자의 성도 길이가 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 연구에서는 이러한 음성의 변화를 포함하는 학습 방법을 제안하여 감정 변화에 강인한 음성 인식 시스템을 개발하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법을 사용하면 감정 데이터의 오차가 기존 방법보다 28.4% 감소되었다.