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ABSTRACT

Hidden Markov Models (HMM's) with explicit state duration density (HMM/SD) can represent the time-varying 

characteristics of speech signals more 거ccurately. However, such an advantage is reduced m relatively smooth state 

duration densities or long bounded duration. To solve this problem, we propose HMM's with global path constraint 

(HMM/GPC)where the transition between states occur only within prescribed time slots. HMM/GPC explicitly 

limits state durations and accurately describes the temproa] structure of speech simply and efficiently. HMMs 

formed by combining HMM/GPC with HMM/SD are also presented (HMM/SD+ GPC) and performances are 

compared. HMM/GPC can be implemented with slight modifications to the conventional Viterbi algorithm. HMM/ 

GPC and HMM/SD 十 GPC not only 아]ow superior performance 나i거n the conventional HMM and HMM/SD but also 

require much less computation. In the speaker independent isolated word recognition experiments, the minimum rec­

ognition error rate of HMM/GPC(1.6%) is 1.1% lower than the conventional HMM's and the required computation 

decreased about 57%.

요 약

상태 지속 밀도를 사용하는 Hidden Markov Models(HMM/SD)은 음성 신호의 시간적인 변화를 보다 명확하게 나타낼 

수 있다' 11러나 상태 지속 밀도가 완만하거나 제한된 상태가 길면 이러한 장점은 감소된다. 이러한 문제점을 해결하기 위하 

여, 본 논문에서는 상태간의 춘!이가 특정한 시산 计산에서만 발생하도록 하는 전체 경-류 제한 조건을 갖는 HMM/GPC를 

제한한다. HMM/GPC는 상태 지속을 제한하고 음성 신호의 시간적 변화를 단순하고 효과적으로 표현할 수 있다. 또한 

HMM/SD와 HMM/GPC를 셜합한 새로운 형태의 HMM/SD+GPC를 제안하고 성능을 비교하였다. HMM/GPC는 기존 

Viterbi 알卫리즘을 으¥가 수정하여 구현될 个 있匸卜. HMM/GPC와 HMM/SD + GPC는 기존 HMM과 HMM/SD에 비하 

여 우수한 성능을 보일 뿐반아니라 셰 산량도 매우 삭다. 화시묵립 다도음 인시 실험예서. HMM/GPC(L6%) 의 최소 오차 

는 기존 HMM보다 1.1% 낮았고 계산량도 57% 김소하였다.
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1 . Introduction

Metiiod-s used m speech recognition such as 

Dynamic Tme Warpmg(DTW)Lll and Hidden 

Marko\- Models (HMM s)[2] are similar in that 

나try to model the temporal structure of 

speech signals. The characteristics of a speech 

signal are determined by the shape of the vocal 

tract as it. changes over time and hence by the 

generated time-varying spectrum. Such changes 

represent the duration and relative change in the 

acoustical characteristics (i.e. spectrum, etc.) of 

the speech signal. As a result, the performance of 

a speech recognition system largely rests on the 

accuracy in representing such time-varying traits.

HMM 怎 with state duration(HMM/SD) uses 

state duration model to represent temporal chara­

cteristics more specifically. This shows improved 

performance over the conventional HMM[4], but 

requires more memory and computation. Accord- 

ingly, nonparametric state duration densities 

were replaced with parametric forms such as 

Poisson[3], Gamma[4], Gaussian[5], and Uniform 

[2] densities. However, the assumed state duration 

densities could not be guaranteed to provide accu­

rate representations. Furthermore, for a smooth 

state duration density, distorted matches become 

possible within the Viteribi algorithm[6]. To 

overcome such problems, the bounded state du「 

ation density (HMM/BSD) with minimum and 

maximum state duration bounds has been pro- 

posed[6]. Nevertheless, this method still produces 

inaccurate matches for Ion힘 state durations, and 

the required computation remains much greater 

than the conventional Vierbi algorithm.

An effective sub-optimal solution is to estimate 

HMM parameters and the state duration densities 

separately, then to use both in the recognition 

process[6][7]. Iq this case, the state duration 

density is obtained directly from the trained 

HMM parameters and the training data. Even so, 

this method requires 15 to 20 times the compu­

tation of the conventional Viterbi algorithm. Such 

problems led Rabiner et al[7] to propose using a 

post processor to include state duration infornrition 

in the recognition process. This method finds the 

optimal state sequence by the Viterbi algori나im 

and. backtraking, obtains the duration for each 

state, and adds the state duration probability to P*  

which represents the similarity to the input data. 

However, this method requires storage of D state 

duration densities for each word model, where D 

is the maximum duration of a state. In addition, 

the final probability is obtained by finding the 

optimal state sequence by the Viterbi algorithm 

and backtracking to adjust the state duration 

density, leading to redundant computation.

To overcome such problems, a globally path 

constrained HMM s (HMM/GPC) that simply and 

effectively represents the temporal structure of 

speech signals is proposed in 나Ms paper. During 

the recognition phase in HMM/GPC, state tra- 

nsitions are restricted to prescribed time slots, 

leading to fewer mismatches and increased recog­

nition rates. Moreover, the proposed method can 

be implemented by slight modifications to the 

Viterbi algorithm and results in less computation 

than in conventional Viterbi decoding.

Further, the global path constraint is incorpor^ 

ated into the HMM/SD and HMM/BSD for 

improved performance and reduced computation. 

In gobally path constrained HMM/SD and HMM 

/BSD, state duration is restricted by 나le state 

duration density and also limited to specified time 

slots. Therefore, as in HMM/GPC, the global 

path constraint allows fewer mismatches and 

greatly reduces computation in 나｝e HMM/SD and 

HMM/BSD.

This paper is presented as follows. The HMM/ 

GPC with global path constraint is presented in 

Chapter II. Experimental results are given in 

Chapter III, and the conclusion is given in Chapter 

IV.
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II. HMM with Glob치 Path Constraint

In the proposed HMM/GPC, two transition 

time limiting parameters, and 纶, 건re required 

in addition to conventional HMM parameters, 

state transition probabilites ai; and observation 

probabilies ). The two parameters restrict 

state transitions to specified time slots during 

recognition. These parameters are estimated dur­

ing training to modify the defintion of maxmum 

likelihood in the conventional HMM during rec­

ognition. An HMM is defined as follows :

():observation sequence

11 '■ start time of the normalized state transition 

time slot of state S(

ut : end time of the normalized state transition 

time slot of state S,

q state transition sequences q =疆…山、 where qt 

is the state at time t

Q : set of all possible state sequences 

s : set of states = 1

X： HMM/GPC

The maximum likelihood P(O |A) that model X 

generates on observation sequence () in a HMM/ 

GPC is as follows.

P(이 A)= max P(O and q\k) (1)
丄

Since the transition time limiting parameters of 

each state are obtained during training, the above 

definition is used onlv in recognition.

To find the HMM/GPC parameters, 나le con- 

ventior｝지 Baum-W이ch algoiFrhm is first used to 

■-'btain a-., and h,(().). The optimal state sequence 

of the training data is then found by the Viterbi 

algorithm to estimate the transition time limiting 

parameters I, and u, for each state .s；

For example, if slk and elk are 나le start and end 

times of state、of the optimal state sequence of 

the kth training data, Tk training data and K is 

the number of training tokens per word, I, and ut 

are obtained as follows.

Amin (普) (2)

1 W k < K I k

. 。房
払=min (-：— ) (3)

I k < AT M

Fig.l shows the start and end times s1k and eik 

of the optimal state sequence q*  of the kth training 

data m an N-state HMM.

As stated above, the HMM/GPC restricts 

state transitions to specified time slots so that 

the number of distorted mathes are decreased. 

This implies that the HMM/GPC is able to provide 

a simple zmd effective representation of 나圮 

time-varying characteristics of speech signals. 

Fig. 2 shows the region of possible paths of the 

optimal state sequence in Viterbi decoding for 

the conventional HMM 바iow口 in Fig.3(a) and 

나)e HMM/GPC. As shown in 나怡 figure, 나］e con­

ventional HMM allows significantly distorted 

matches. To overcome this problem, the path of 

the optimal sequence is given a further restric­

tion. An HMM with global path constraint which 

limits the region of the optimal state sequence is
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Fig. 1. Finding the transition time limiting parameters in HMM/GPC〈q*  : state transition 

sequence, i: time, slk, elk : transition time limiting parameter at state S,)
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"「，".： " i .simple and effective representation of 

!：■■ ；'h ic varvmg characteristics of a speech signal. 

' ■ m<t\- l)c seen as an apf)hcatjon of the global

.，i：n coi'o.t.!aint oi DTW t.o Viterbi decoding in 

i\1XI *

framr number attest pettem

Fig. 2. Possible regions m Viterbi decoding for the con­

ventional HMM and IIMM/GPC.

Fig. 3. HMM s with (a) 2 state transitions and (b) 3 

state transitions

The HMM/GPC may be implemented as follows 

by slight modifications in the conventional Viterbi 

algorithm.

for / =

for 丿=L2,…,N

厂 max成 山')+k)gq」+ log4((시, /z< -~ <u, 
以丿)=ec T

'-- x, 이 sewhere (4)

In addition to requiring only slight modifications, 

the HMM/GPC also significantly reduces compu­

tation. This is because the Viterbi algor比hm is 

only carried out in the region limited by the 

global path constraint, as shown in Fig.2f and leads 

to the reduction of mismatches tor i nip roved per 

form 거 nee.

The biggest difference between the HMM/ 

BSD and the HMM/GPC is that the former 

places constraints on the duration of each state, 

while the latter effectively limits the state 

transitions to prescribed time slots to disallow 

stray matches.

The global path constraint is also proposed for 

use in the HMM/SD to improve performance and 

reduce computation. Various HMM/SD s with 

different state duration densities were defined. 

For example, HMM/SD s with Poisson[3], Gammal 

[4], Gaussian[5] and Uniform[2] state duration 

densities and the bounded state duration HMM/ 

BSD with minimum and maximum duration 

constraints were considered. The state duration 

densities were obtained from the training data by 

the Viterbi algorithm as in 나a case of HMM/ 

GPC. If the global path constraint is applied to 

the HMM/SD (i.e. HMM/SD+ GPC), state 

duration is limited by the state duration density 

and to a prescribed region.

As in HMM/GPC, 나le global path constraint in 

HMM/SD reduces mismatches and reduces com­

putation. The globally path constrained state dur 

ation HMM is implemented using the transition 

time limiting equations of (2) and (3) in addition 

to the recursive relations of the state duration 

HMM[6].

DI. Experimental Results

To evaluate the performance of the proposed 

method, 다le HMM of Fig.3 was used for speaker 

independent isolated word recognition.

3.1 Database
The speech recognition database is composed 

of 11 Korean digits (汀(1), _/(2), s'am(3), $》(4), 

泌⑸,you^(6), child),少=/(8),邵£(9),如性g(0), 

yowg(O) and 3 commands for a total of 14 words.
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The training data was obtained from 50 inale 

speakers hi their twenties 거nd thirties who prono­

unced each word twice (14 words x 50 speakers 조 

2 times --1400 utterances), and the test data was 

given by 20 other male speakers in their twenties 

and thirties who pronounced each word twice (14 

words x 20 speakers x 2 times =560 utterances). 

Each utterance was recorded on digital audio tape 

(DAT) using a directed microphone (AT831b) in 

a relatively quiet environment.

3.2 The Speech Recognition System
A speaker independent isolated word recog­

nition system using HMM's is constructed as 

follows. The speech signal is passed through a 

lowpass filter with a cutoff frequency of 4.5 KHz 

and sampled to 10 KHz at 16 bits. The sampled 

signal is preemphasized by a filter with a transfer 

funcion of 1 — 0.95z ! and is partitioned into 

silence and speech intervals by endpoint detec- 

tion[8L The resulting speech signal is blocked 

into 20ms (200 sample) frames using a Hamming 

window with 10ms overlap, and 14th order LPC 

coefficients are obtained through LPC analysis. 

14th order LPC cepstrum coefficients to be used 

in recognition are then found from the LPC 

coefficients. The feature vectors are vector 

quantized by a 256-codebook obtained using the 

LBG algorithm[9] into codeword sequences. The 

recognition system is based on a discrete obser­

vation HMM of 2 types of models as in Fig.3. 

The Baum-Welch algorithm was used to tram the 

mod시 for each word. In HMM speech recog­

nition, the similarity between the input obser­

vation sequence and the model is measured by 

the Viterbi algorithm, and the model providing 

the highest probability is chosen to represent the 

input word. The minimum value of the elements 

of 나le observation probability matrix 

was set at l.Oe^6.

3.3 Comparison of the performances of the 

conventional HMM and HMM/GPC

Speaker independent isolated word recognition 

cxpciimcnts \ver(' conducted to compare the per- 

torrnaiK e Hit convi'ntiona5 HMM with the 

proposed HMM/GPC. Eig. s 4(a) and Hb) show 

the speaker independent isolated word recognition 

error rates of the conventional HMM and HMM/ 

GPC as the number of states using the models of 

Fig. 3(a) and Fig. 3(b) varies. As shown in the 

figure, the globally path constrained HMM/GPC 

showed less error than the conventional HMM 

regardless of the number of states. These results 

imply that errors in the conventional HMM arc 

due to erroneous matches. Therefore, reducing 

mismat사]es effectively in the HMM/GPC led to 

improved performance.

Fig. 1 (a) compares the performance between 

나此 conventional HMM and HMM/GPC accorciiiig 

to the number of states where 2 state transitions 

are possible for each state. For 5 states, the error 

rate was 5.9% 서nd 3.4% respectively for the con 

ventional HMM and HMM/GPC, showing a 

maximum improvement of 2.5%. Also, the minimum 

error was obtained for 9 states, with 2.7% and 1. 

6%, giving an improvement of 1.1%.

Fig. 4(b) shows the performance of the con­

ventional HMM and HMM/GPC with 3 state 

transitions as the number of states varies. As can 

be seen from the figure, the globally path con­

strained HMM/GPC shows less error than the 

conventional HMM regardless of the number of 

states but showed slightly greater error than the 

results with 2 state transitions as shown in Fig. 

4(a). Th거t is, mod이s with 2 state transitions as 

m Fig. 3(a) showed better performance than the 

mdoels with 3 state transitions. In the case of 3 

state transitions, the minimum error rates of the 

conventional HMM and HMM/GPC were 3.0% 

and 2.1% respectively.

By observing the error rate according to the 

number of states, it can be seen that the error 

rate is greatly reduced as the number of sates 

increases for both the conventional HMM and 

HMM/GPC, This 아lows that 죠 greater number of 

states is able to represent the time-varying 
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c'haracteristiCbiiic I raining data to reduce the 

mm가)5 of stray matches in Viterbi decoding. 

f£s[)eeiany. the conventional HMM is seen to pro 

riuce greater errors the number of states becomes 

smaJl. The HMM/GPC shows improved perform- 

?ince by lin기tmg mismatches using the global path 

constraint, and showed marked improvement in 

cases where the number of states is small. This is 

an important point, since the amount of memory 

and tranming data as well as compuation

in recognition increases as the number of HMM 

states increases.

(£
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E
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Fig. 4. Speaker independent isolated word recognition 

error rates for the conventional HMM and 

HMM/GPC with (a) 2 state transitions and (b) 

3 state transitions.

3.4 Comparison of the performances of the 

conventional HMM, HMM/SD, HMM/SD 

+ GPC and 너MM/BSD+GPC
This experiment evaluates the performance of 

the HMM/SD and HMM/BSD using state durations 

and . HMM/SD+ GPC and HMM/BSD + GPC 

with the proposed global path constraint. That is, 

the performances of the conventional HMM/SD 

with state duration density, the HMM/BSD with 

minimum and maximum limts in state duration, 

the HMM/SD+ GPC with state duration density 

and global path constraint and the HMM/BSD + 

GPC with bounded state duration and global path 

constraint are comp겄red. The state duration 

densities used are the Gamma, Poisson, Gaussian, 

and Uniform functions. The Geometric is the state 

duration density of conventional HMM, These 

state duration densities are found from the optimal 

state sequence of the training data obtained from 

the trained HMM s and the Viterbi algorithm. 

The minimum and maximum state duration of the 

HMM/BSD were also found from the optimal 

stae sequence.

Table 1 shows the results of the speaker inde­

pendent isolated word recognition experiments 

using the HMM of Fig. 3(a) with 9 states. In the 

table, the case using the uniform state duration 

HHM/Uniform (2.0%) showed 0.7% improvement 

over the HMM without state duration (2.7%). 

Using various state duration densities with mini­

mum and maximum duration (HMM/BSD) also 

shwoed improved performance over the HMM/ 

SD. Also, ush胡 the global path constraint in HMM 

/SD + GPC and HMM/BSD + GPC also showed 

improvement over the HMM/SD and HMM/BSD 

respectively. The best performance was obtatined 

using the HMM/SD with uniform state duration 

(SD = Uniform) with the global path constraint 

in HMM/SD 十 GPC and HMM/BSD + GPC (1. 

4%), giving a 1.3% improvement over the HMM 

without state duration.

Comparing the performance of HMM/SD, 
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HMM/BSD and HMM/GPC in the table, it can 

be- seen th；：V fhe proposed HMM/GPC shows bet 

ter performance than the conventional KMM/SL1 

and HMM/BSD. These results show that 나]e 

proposed HMM/GPC represents the temporal 

structure of speech more accurately than the 

HMM/SD and HMM/BSD. to effectively reduce 

mismatches in Viterbi decoding.

Table 1. Speaker independent isolated word recog­

nition error rates for N = 9, 2 state transitions

HMM 

state

I
HMM/ 

SD + GPC

HMM/

BSD+GPC
HMM/SD i HMM/BSD

duration mode! ) i —―_ -- -一
Gamma [ 2.3 i 2.0
Poisson ' 2.1 j 2.0

1.8 1

些―[

1.6

1.6

Gaussian 2.5 1 2.£ j 으) 2.0

Uniform 2. Ci j 1.8 1.4 ,
- ------- f

1.1

Geometric 2.7 2.3 5 1 財

Another advantage of the HMM/GPC is greatly 

reduced computation of the conventional Viterbi 

algorithm. As shown m Fig.2 the region included 

in the computation of the Viterbi algorithm is 

much reduced. For example, if I' is defined as the 

number of words,、the number of states and k 

tlic number of ^tate transitions per state, for an 

iTipiu patten, of length T. the computation for 

conventional Viterbi algorithm requires (件“ 

multiplications and ( 奴 iogaH나imic operationsLlOl 

In this paper, k takes values of 2 or 3 according 

to the number of state transitions.

Meanwhile, the HMM/GPC uses transition time 

limiting parameters for each word model 겄nd 

requires different amounts of computation for 

each word, so that the required computation must 

be determined experimentally. In T선bla 2, the 

average computation required to recognize test 

patterns in speaker independent isolated word 

recognition experiments by the conventional 

HMM and HMM/GPC were compared. Here, the 

number of words was【’ = 14 and average test 

pattern length was T — 51.5 frames. As shown in 

the table, for the HMM/GPC, the computation 

required for the conventional Viterbi algorithm 

dropped to below half in most cases. For A' = 9 

with 2 state transitions as in Fig. 3(a). the 

required computation decreased about 57%, and 

for the case with 3 shate transitions as in Fig. 3 

(b), computation decreased 62%. The HMM/SD 

HMM/GPC for all test patterns

Table 2. Average computational loads of the conventional HMM and

number 

of state 

transition

fc = 2 k = 3

number Cm试
reduction 

ratiof%)

('屈 =E

reduction 

ratio (%)

of state

N HMM
HMM/

GPC
HMM

HMM/

GPC

3 4326 2436 56.3 6489 3613 55.7

4 5768 2W 50.8 8652 4216 48.7

5 7210 3448, 47.8 10815 4782 44.2

6 8652 3949 45.6 12978 5455 42.0

7 10094 4433 43.9 15141 5929 39.2

8 11536 5024 43.6 17304 6623 38.3

9 12978 5572 42.9 19467 7301 37.5

10 14420 6168 42.8 21630 7777 36.0

11 15862 6724 42.4 23793 8337 35.0

12 17304 7180 41.5 25956 8985 34.6

13 18746 7842 41.8 28119 9410 33.3
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wir appruxniKHciy 15 to 20 times the compn

1 at i()ii of t e conventional 11M M. which is about 

3(} to 40 tunes the computation of the HMM/ 

GiX：.

IV. Con이usion

(h ihis paper, 건 HMM with global path con 

straini ( f IMM/GPC) that cffcctiv인y represents 

the time varying characteristics of speech signals 

is proposed. State transitions were restricted to 

prescribed time slots in HMM/GPC to reduce 

stray matches for improved recognition. Also, the 

proposed method can be implemented by slight 

modifications to the conventional Viterbi algorithm 

and greatly reduces the required computation. 

HMM/GPC only needs two transition time 

limiting pai'ameters m addition to the conventional 

HMM parameters, thus incurring alomost no 

increase in memory.

In addition, by applying the global path constraint 

to 바辎 HMM/SD and HMM/BSD using state dur- 

겄tion densities, a method for improving perform­

ance and reducing computation was also proposed. 

In the HMM/SD + GPC where the global path 

constraint was applied to the HMM/SD, not only 

is the state duration limited by the state duration 

density but also has the effect of limiting it to a 

specified it to a specified time interval. Therefore, 

as in the HMM/GPC, the global path constraint 

reduces mismatches in HMM/SD and grea니y 

decreases computation.

Comparing the results of the globally path 

constrained HMM/GPC and the HMM/SD + GPC 

with state duration density, it can be seen that 

the proposed HMM/GPC shows better perform­

ance than 나比 conventional HMM/SD and HMM/ 

BSD. This implies that the proposed HMM/GPC 

can represent the time-varying characteristics of 

speech signals more accurately than the HMM/ 

SD and HMM/BSD and that distorted matches in 

Viterbi decoding may be reduced effectively.

Moreover, the HMM/GPC requires less compu­

tation in recognition than the HMM/SD and 

HMM/BSD.
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