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ABSTRACT

Hidden Markov Models (HMM s} with explicit state duration density (HMM/SD) can represent the time-varying
characteristics of speech signals more accurately, However, such an advantage s reduced 1n relatively smooth state
duration densities or long bounded duration. To solve this problem. we propose HMM s with global path constraint
(HMM/GPC) where the transition between states occur only within prescribed time slots, HMM/GPC explicitly
fimits state durations and accurately describes the temproal structure of speech simply and efficiently. HMM's
formed by combining HMM/GPC with HMM/SD are aiso presented {HMM/SD+ GPC) and performances are
compared. HMM/GPC can be implemented with shight modifications to the conventional Viterbi algorithrn, HMM/
GPC and HMM/SD + GPC not only show superior performance than the conventional HMM and HMM/SD but also
require much less computation. In the speaket independent isolated word recognition experiments, the minimum rec-
ogrution error rate of HMM/GPC{1.6%) is 1.1% lower thun the conventional HMM s and the required computation

decreased about 57%.
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t . Introduction

Muethads used jnr speech recognition such as
Pvname, Tine Warping{DTW) 1] and Hidden
Markovy Models (HMM s)[2] are similar in that
they 1ry to model the temporal structure of
specch aignals, The characteristics of a speech
signal are deternuned by the shape of the vocal
tract as it changes over time and hence by the
generated time-varying spectrum. Such changes
represent the duration and relative change in the
acuustical characteristics (Le. spectrum, etc.} of
the speech signal. As a result, the performance of
a speech recogmition system largely rests on the
accuracy 1n representing such time-varying traits.

HMM s with state duration{HMM/SD)} uses
state duration model to represent temporal chara-
cternstics more specifically, This shows improved
performance over the conventional HMM{4], but
requires more memory and computation. Accord-
ingly, nonparametric state duration densities
were replaced with parametric forms such as
Poisson[3], Gamma[4], Gaussian(5], and Uniform
[2] densities, However, the assumed state duration
densities could not be guaranteed to provide accu-
rate representations. Furtherrmwre, for a smooth
state duration density, distorted matches become
possible within the Viteribi algorithml[6]. To
overcome such problems, the bounded state dur-
ation density (HMM/BSD} wath minimum and
maximum state duration bounds has been pro-
posed[6]. Nevertheless, this method still produces
inaccurate matches for long state durations, and
the required computation remains much greater
than the conventional Vierbi algorithm.

An effective sub-optimal solution is to estimate
HMM parameters and the state duration densities
separately, then to use both in the recognition
process[6](7]). Ig this case, the state duration
density is obtained directly from the trained
HMM parameters and the training data, Even so,
this method requires 15 to 20 times the compu-

tation of the conventional Viterbi algorithm. Such
problems led Rabiner et ai[7] to propose using a
post processor to include state duration inforrxition
in the recognition process. This method finds the
optimal state sequence by the Viterbi algorithm
and. backtraking, obtains the duration for each
state, and adds the state duration probability to P*
which represents the similarity to the input data.
However, this method requires storage of ) state
duration densities for each word model, where D
1s the maximum duration of a state, In addition,
the final probability is obtained by finding the
optimal state sequence by the Viterbi algorithm
and backtracking to adjust the state duration
density. leading to redundant computation.

To overcome such problems, a glohally path
constrained HMM s (HMM/GPC) that simply and
effectively represents the temporal structure of
speech signals is proposed in this paper. During
the recognition phase in HMM/GPC, state tra-
nsitions are restricted to prescribed time slots,
leading to fewer mismatches and increased recog-
nition rates, Moreover, the proposed method can
be implemented by slight modifications to the
Viterbt algorithm and results in less computation
than in conventional Viterbi decoding,

Further, the global path constraint is incorpor-
ated into the HMM/SD and HMM/BSD for
improved performance and reduced computation,
In gobally path constrained HMM/SD and HMM
/BSD, state duration is restricted by the state
duration density and also limited to specified time
slots. Therefore, as in HMM/GPC, the global
path constraint allows fewer mismatches and
greatly reduces computation in the HMM/SD and
HMM/BSD.

This paper is presented as follows. The HMM/
GPC with global path constraint is presented in
Chapter 1I. Experimental results are given in
Chapter I1I, and the conclusion is given in Chapter
v,
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1. HMM with Globat Path Constraint

In the proposed HMM/GPC, two transition
time limiting parameters, {; and #«, are required
in addition to conventional HMM parameters,
state transition probabilites a,; and observation
probabilies b;t0)). The two parameters restrict
state transitions to specified time slots during
recognition. These parameters are estimated dur-
ing tramning to modify the defintion of maxmum
likelihood in the conventional HMM during rec-
ognition, An HMM is defined as follows :

() : gbservation sequence

{;:start time of the normalized state transition
time slot of state S,

#,.end time of the normalized state transition
time slot of state §,

g :state transition sequences ¢-=g--g1 where g,
1s the state at time ¢

() - set of all possible state sequences

N iset of states S, i=1,-,\

A HMM/GPC

The maximum likelihood P(O}A) that mode] A
generates on observation sequence (7 in a HMM/
GPC is as follows,

P(O|A) = max PO and ¢{x) (§D)]
qe= N G P
qEQ

Sinice the transition time limiting parameters of
each state are obtained during training, the above

definition s used only in recognition.

To find the HMM/GPC parameters, the con-
ventional Baum-Welch algorithm is first used to
“heamn o and Adort The aptumal state sequence
of the training data 13 then found by the Vitertn
algotithm tv estimate the transition time hmiting
parameters {; and #«, for each state &,

For example, if s, and ¢,, are the start and end
times of state N, of the optimal state sequence of
the kth training data, 7 training data and K is
the number of training tokens per word. ¢ and #;
are obtained as follows,

. Sik
L= min (3% (2)
Jrflhlz]ﬁ T,c }
. €,
®, = min =) (3)
bk R 1k

Fig.]1 shows the start and end times s, and ¢
of the optimal state sequence ¢* of the kth training
data in an N-state HMM.,

As stated above, the HMM/GPC restricts
state transitions to specified time slots so that
the number of distorted mathes are decreased,
This implies that the HMM/GPC is able to provide
a simple and effective representation of the
tire-varying characteristics of speech signals,
Fig,2 shows the region of possible paths of the
optimal state sequence in Viterbi decoding for
the conventional HMM shown in Fig.3(a) and
the HMM/GPC. As shown in the figure, the ¢on-
ventional HMM allows significantly distorted
matches. To overcome this problem, the path of
the optimal sequence is given a further restric-
tion, An HMM with globa! path constraint which
limits the region of the optimal state sequence is

a'=S;, S, S, S1, Si, Sz Sz, S2, Sz S5 Sy Sz, -, Sn-1, Sn, Sn, Sn, Sy

t= 1 2 3 4 5 6 7 8 9 10 11 12 ™~ T
) i Il } )
Stk € Sx €x Sx €x SNk €Nk

Fig. 1. Finding the transition rime limiting parameters in HMM/GPC (¢*: state transition
sequence, 7 I Time, Sy, & - transition fime limiting parameter at state §,).
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Fig. 3. HMM's wath (a) 2 state transitions and (b} 3
state transitions

The HMM/GPC may be implemented as follows
by shght modifications i the conventional Viterbi
algorithm,

for £ =1.2,-,T
for j=1.2.---.X

Co f
o max 13, (i} +loga ) +log b it [ 5~ <y
Sy = l:lws\ - 7

-, elsewhere (4)

in addition to requiring only slight modifications,
the HMM/GPC also significantly reduces compu-
tation. This is because the Viterbi algorithm is
only carried out in the region limited by the
global path constraint, as shown in Fig,2, and leads

to the reduction of nusmatches tor improved per
formance.

The biggest difference between the HMM/
BSD and the HMM/GPC s that the former
places constraints on the duration of each state,
while the latter effectively limits the state
transitions to prescribed time slots to disallow
stray matches.

The global path constraint is also propesed for
use in the HMM/SD to improve performance and
reduce computation. Various HMM/SD's with
different state duration densities were defined.
For example, HMM/SD's with Poisson{3], Gamma}
(4], Gaussiani5] and Uniform[2] state duration
densities and the bounded state duration HMM/
BSD with minimum and maximum duoration
constraints were considered. The state duration
densities were obtained from the training data by
the Viterbi algorithm as in the case of HMM/
GPC. If the global path constraint is applied to
the HMM/SD (i.e. HMM/SD+GPC), state
duration s limited by the state duration densiy
and to a prescribed region.

As in HMM/GPC, the global path constraint in
HMM/SD reduces mismatches and reduces com-
putation. The globally path constrained state dur
ation HMM tis implemented using the transition
time limiting equations of {2) and (3) in addition
to the recursive relations of the state duration
HMML6].

Ul. Experimental Results

To evaluate the performance of the proposed
method, the HMM of Fig.3 was used for speaker
independent isolated word recognition,

3.1 Database

The speech recognition database ts composed
of 11 Korean digits (i#H{1), vi(2), s'am(3}, sa{4),
oh{5}, vouk{6), chil(7), p'al(8), gu(9), kongl0),
yong(0) and 3 commands for a total of 14 words,
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The training data was obtained from 50 male
wneakers in their twenties and thirties who prono-
unced each word twice (14 words x i} spegkers
2 times = 1400 utferances), and the test data was
given by 2G other male speakers in their twenties
and thirties who pronounced each word twice (14
words % 20 speakers x 2 times =560 utterances}),
Each utterance was recorded on digital audio tape
(DAT)} using a directed microphone (AT831b) in
a relatively quiet environment,

3.2 The Speech Recognition System

A speaker independent isolated word recog-
nition system using HMM's Is constructed as
foliows, The speech signal is passed through a
lowpass filter with a cutoff frequency of 1.5 KHz
and sampled to 1) KHz at 16 bits, The sampled
signal is preemphasized bv a filter with a transfer
funcion of 1-095z ' and is partitioned into
silence and speech intervals by endpoint detec-
tion[ 81, The resulting speech signal is blocked
into 20ms {206) sample) frames using a Hamming
window with 10ms overlap, and 14th order LPC
coefficients are obtained through LPC analysis.
14th order LPC cepstrum coefficients to be used
1 recognition are then found from the LPC
coefficients. The feature vectors are vector
quantized by a 256-codebook obtained using the
LBG algorithm{9] into codeword sequences. The
recognition system is based on a discrete obser-
vation HMM of 2 types of models as in Fig.3.
The Baum-Welch algorithrn was used to train the
model for each word. In HMM speech recog-
nition, the similarity between the input obser-
vation sequence and the model is measured by
the Viterbi algorithm, and the model providing
the highest probability is chosen to represent the
input word. The minimum value of the elements
of the observation probability matrix B=1{4(0
was sef at 1,0e 7%,

3.3 Comparison of the performances of the
conventional MM and HMM/GPC

Speaker mdependent solated word recognition
cxpurinwnts were ~ondneted to compare the per-
anonat FTIMAY with the
proposed HMM/GPC. Fig. s 4{a} and 1ib} show
the speaker independent isvlated word recognition
error rates of the conventional HMM and HMM/

GPC as the number of states using the models of

FOPIYRLTK & 1o 000 Loy

Fig. 31a) and Fig, 3{b) varies, As shown in the
figure, the globally path constrained HMM/GPC
showed less error than the conventional HMM
regardless of the number of states. These results
mply that crrors i the conventional HMM are
due to erroneous matches, Therefore, reducing
mistnatches effectively in the HMM/GPC led o
improved performance.

Fig. Ha) compares the performance hetween
the conventional HMM and HMM/GPC according
to the number of states where 2 state Lransitions
arc possible for each state. For 3 states, the error
rate was 5.9% and 3.4% respectively for the con
ventional HMM and HMM/GPC, showing a
maximun improvement of 2.5%,. Also. the minjmum
crror was obtained for 9 states. with 2.7% and 1.
6%, giving an improvement of 1.1%.

Fig. 1th) shows the performance of the con
ventional HMM and HMM/GPC with 3 state
transitions as the number of states varies, As can
be seen from the figure, the globally path con-
strained HMM/GPC shows less error than the
conventional HMM regardless of the number of
states but showed slightly greater error than the
results with 2 state transitions as shown in Fig.
4(a). That is, models with 2 state transitions as
in Fig. 3(a) showed better performance than the
mdoels with 3 state transitions, In the case of 3
state transitions, the minimura error rates of the
conventional HMM and HMM/GPC were 3.0%
and 2.1% respectively.

By observing the ervor rate according to the
number of states, it can be seep that the ervor
rate is greatly reduced as the number of sates
increases for both the conventional HMM and
HMM/GPC. This shows that a greater nurnber of
states is able to represent the time-varying
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chor teristics ot the lraining data (o redece the
nunber o stray matches o Vitertn decoding,
Fspwciallv, the conventional HMM s seen to pro
Juee greater errors as the pumber of states becomes
small. The HMM/GPC shows unproved perform-
ance by limiting mismatches using the global path
constraint, and showed marked improvement
cases where the number of states is small. This 1s
an important point, since the amount of memory
and tranining data as well as compuation required
in recognition increases as the number of HMM

states (nereases,
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Fig. 4. Speaker independent isolated word recognition
error rates for the conventional HMM and
HMM/GPC with (a) 2 state transitions and (b)
3 state transitions,
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3.4 Comparison of the performances of the
conventional HMM, HMM/SD, HMM/SD
+ GPC and HMM/BSD + GPC

This experiment evaluates the performance of
the HMM/SD and HMM/BSD usirg state durations
and . HMM/SD+GPC and HMM/BSD+ GPC
with the proposed global path constraint. That is,
the performances of the conventional HMM/SD
with state duration density, the HMM/BSD with
minimum and maximum limts in state duration,
the HMM/SD+ GPC with state duration density
and global path constraint and the HMM/BSD +
GPC with bounded state duration and gilobal path
constraint are compared, The state duration
densities used are the Gamma, Poisson, Gaussiai,
and Uniform functions, The Geometric is the state
duration density of conventional HMM, These
state duration densities are found from the optimal
state sequence of the training data obtained from
the trained HMM's and the Viterbi algorithm.
The mimmum and maximum state duration of the
HMM/BSD were also found from the optimal
stae sequence,

Table 1 shows the results of the speaker inde-
pendent 1solated word recognition experiments
using the HMM of Fig, 3(a) with 9 states. In the
table, the case using the uniform state duration
HHM/Uniform (2.0%) showed 0.7% improvement
over the HMM wathout state duration (2.7%),
Using various state duration densities with mini-
mum and maximum duration (RMM/BSD) also
shwoed improved performance over the HMM/
SD. Also, using the global path constraint in HMM
/SD+GPC and HMM/BSD+GPC also showed
improvement over the HMM/SD and HMM/BSD
respectively, The best performance was obtatined
using the HMM/SD with uniform state duration
(SD = Uniform)} with the global path constraint
in HMM/SD +GPC and HMM/BSD+GPC (1.
49%), giving a 1.3% improvement over the HMM
without state duration,

Comparing the performance of HMM/SD,
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HMM/RSD and HMM/GPC in the table, 1t can
L seer that the proposed HMM/GPC shows bet
ter performance than the conventional HMM/SL
and HMM/BSD. These results show that the
proposed HMM/GPC represents the temporal
structure of speech more accurately than the
TIMM/SD and HMM/BSD. to effectively reduce

mismatches in Viterbi decoding.

Table i. Speaker independent isolated ward recog-
nition error rates for N =9, 2 stale transitions

HMM | | : !

| ! |
- .1 | HMM
state ! HMM/SD | HMM/BSD! ) | /

or | +GPC
dusation enadel ! ! ! SbrGre IBSD G

— PO T
Gamma _'L 220 L& e
T s e e e —
Poisson 1 21 1 2 Lk L Q6
- — [ - e — o - ——

Gaussian ; |
— ?._ . — - _ﬁ

Umiform

Geometrlc |

Another advantage of the HMM/GPC Is greatly
reduced computation of the conventional Viterbi
algorithm. As shown in Fig.2. the region included
in the computation of the Vlterbi algonithm is
much reduced. For example, if i is defined as the

number of words, N rhe number of states and k
thie number of state transitions per state, for an
L lengty T the computation for
Viterbi
multiplications and (,,. logarithmic eperations[10},

In this paper, k takes values of 2 or 3 according

mpi fralived.

conventional algorithm requires (..

to the number of state transitions.

Meanwhile, the HMM/GPC uses transition time
limiting parameters for each word model and
requires different amounts of computation for
each word, so that the required computation must
be determined experimentally. ln Table 2, the
average computation required to recognize test
patterns in speaker independent isolated word
recognition experiments by the conventional
HMM and HMM/GPC were compared. Here, the
number of words was ["=14 and average test
pattern length was 7 =751.5 frames. As shown in
the table. for the HMM/GPC, the computation
required for the conventional Viterbi algorithm
dropped to below half in most cases. For V=9
with 2 state transitions as in Fig. 3(a). the
required computation decreased about 57%, and
for the case with 3 shate transitions as in Fig, 3
(b}, computation decreased 62%. The HMM/SD

Table 2. Average computational toads of the conventional HMM and

HMM/GPC for all test patterns

number
of state k=2 k=3
transition !
number \ Conut = Uy | ot = Cruy | ]
of state ! reduction reduction
N | HMM ‘ HMM/ ratio{%) | HMM HMM/ ratio{%}
I R < 1 Y B GPC
3 4326 2436 56.3 6489 3613 55.7
1 S57HR 2930 38 B652 4216 48.7
5 7210 3448, 47.8 10815 4782 44.2
6 8652 3949 45.6 12978 5455 42.0
7 10094 4433 43.9 15141 5929 39.2
8 11536 5024 43.6 17304 6623 38.3
9 12978 5572 42.9 19467 7301 375
10 14426 6168 42.8 21630 777 36.0
11 15862 6724 42.4 23793 8337 35.0
12 17304 7180 41.5 25956 8985 34.6
13 18746 7842 41.8 28119 9410 333




accds appreximateiy 15 to 20 times the cormm
tation uf the conventional HNM, winch s about
30 to 40 times the computation of the HMMY
G

I¥. Conclusion

Ly this paper. a HMM with global path con-
stramt THNMNMIGPC) that effectively represents
the titne varving characteristics of speech signals
15 proposed, State transitions were restricted to
prescrnbed Gme slots in HMM/GPC to reduce
stray matches for tmproved recognition, Also, the
proposed method can be implemented by slight
modifications ta the conventional Viterhi algorithim
and greatly reduces the reguired computation.
HMM/GPC only needs two transition time
hmiting parameters in addition to the conventional
HMM parameters, thus incurring alomost no
INCrease in memory.

In addtion. hy applying the glohal path constramt
to the HMM/SD and HMM/BSD using state dur-
ation densities, a method for improving perform-
ance and reducing computation was also proposed.
[n the HMM/SD+ GPC where the global path
constraint was applied to the HMM/SD, not only
is the state duration limuted by the state duration
density but also has the effect of hmiting it to 2
specified it to a specified time interval. Therefore,
as in the HMM/GPC, the global path constraint
reduces mismatches in HMM/SD and greatly
decreases computation.

Comparing the results of the globally path
constrained BMM/GPC and the HMM/SD+ GPC
with state duration density, it can he seen that
the proposed HMM/GPC shows better perform-
ance than the conventional HMM/SD and HMM/
BSD. This umplies that the proposed HMM/GPC
can represent the time-varying characteristics of
speech signals more accurately than the HMM/
SD and HMM/BSD and that distorted matches in
Viterbi decoding may be reduced effectively.
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Moreover, the HMM/GPC requires less compu-
tation in recognttion than the HMM/SD and
HMM /BSD.
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