• Title/Summary/Keyword: Isolated word recognition

Search Result 134, Processing Time 0.033 seconds

A Study on Intelligent Control Algorithm Development for Cooperation Working of Human and Robot (인간과 로봇 협력작업을 위한 로봇 지능제어알고리즘 개발에 관한 연구)

  • Lee, Woo-Song;Jung, Yang-Guen;Park, In-Man;Jung, Jong-Gyu;Kim, Hui-Jin;Kim, Min-Seong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.285-297
    • /
    • 2017
  • This study proposed a new approach to develop an Intelligent control algorithm for cooperative working of human and robot based on voice recognition. In general case of speaker verification, Gaussian Mixture Model is used to model the feature vectors of reference speech signals. On the other hand, Dynamic Time Warping based template matching techniques were presented for the voice recognition about several years ago. We converge these two different concepts in a single method and then implement in a real time voice recognition enough to make reference model to satisfy 95% of recognition performance. In this paper it was illustrated the reliability of voice recognition by simulation and experiments for humanoid robot with 18 joints.

Korean Speech Recognition using DHMM (DHMM을 이용한 한국어 음성 인식)

  • Ann, T.O.;Lee, K.S.;Yoo, H.K.;Lee, H.J.;Cho, H.J.;Byun, Y.G.;Kim, S.H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.52-60
    • /
    • 1991
  • This paper describes the study on isolated word recognition by using DHMM(Dynamic Hidden Markov Model) which has dynamic feature of spectrum as a parameter. This paper discusses speech recognition experiment basedon HMM which can evaluate not only instantaneous spectral features but also dynamic spectral features. LPC cepstrum parameters is used as a static feature and LPC cepstrum's regression coefficient is used as a dynamic feature. These two features are quantized by each VQ codebook. DHMM is modeled by receiving static vector and dynamic vector by input. In the whole experiment, as recognition experiment using DHMM shows 92.7% of recognition rate while the experiment using conventional HMM shows 88.8% of recognition rate, DHMM proved to be a useful model.

  • PDF

Robust End Point Detection for Robot Speech Recognition Using Double Talk Detection (음성인식 로봇을 위한 동시통화검출 기반의 강인한 음성 끝점 검출)

  • Moon, Sung-Kyu;Park, Jin-Soo;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.161-169
    • /
    • 2012
  • This paper presents a robust speech end-point detector using double talk detection in echoic conditioned speech recognition robot. The proposed method consists of combining conventional end-point detector result and double talk detector result. We have tested the proposed method in isolated word recognition system under echoic conditioned environment. As a result, the proposed algorithm shows superior performance of 30 % to the available techniques in the points of speech recognition rates.

Cepstrum PDF Normalization Method for Speech Recognition in Noise Environment (잡음환경에서의 음성인식을 위한 켑스트럼의 확률분포 정규화 기법)

  • Suk Yong Ho;Lee Hwang-Soo;Choi Seung Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.224-229
    • /
    • 2005
  • In this paper, we Propose a novel cepstrum normalization method which normalizes the probability density function (pdf) of cepstrum for robust speech recognition in additive noise environments. While the conventional methods normalize the first- and/or second-order statistics such as the mean and/or variance of the cepstrum. the proposed method fully normalizes the statistics of cepstrum by making the pdfs of clean and noisy cepstrum identical to each other For the target Pdf, the generalized Gaussian distribution is selected to consider various densities. In recognition phase, we devise a table lookup method to save computational costs. From the speaker-independent isolated-word recognition experiments, we show that the Proposed method gives improved Performance compared with that of the conventional methods, especially in heavy noise environments.

Korean isolated word recognizer using new time alignment method of speech signal (새로운 시간축 정규화 방법을 이용한 한국어 고립단어 인식기)

  • Nam, Myeong-U;Park, Gyu-Hong;No, Seung-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • This paper suggests new method to get fixed size parameter from different length of voice signals. The efficiency of speech recognizer is determined by how to compare the similarity(distance of each pattern) of the parameter from voice signal. But the variation of voice signal and the difference of speech speed make it difficult to extract the fixed size parameter from the voice signal. The method suggested in this paper is to normalize the parameter at fixed size by using the 2 dimension DCT(Discrete Cosine Transform) after representing the parameter by spectrogram. To prove validity of the suggested method, parameter extracted from 32 auditory filter-bank(it estimates auditory nerve firing probabilities) is used for the input of neural network after being processed by 2 dimension DCT. And to compare with conventional methods, we used one of conventional methods which solve time alignment problem. The result shows more efficient performance and faster recognition speed in the speaker dependent and independent isolated word recognition than conventional method.

  • PDF

HMM-based Speech Recognition using FSVQ, Fuzzy Concept and Doubly Spectral Feature (FSVQ, 퍼지 개념 및 이중 스펙트럼 특징을 이용한 HMM에 기초를 둔 음성 인식)

  • 정의봉
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.4
    • /
    • pp.491-502
    • /
    • 2004
  • In this paper, we propose a HMM model using FSVQ(First Section VQ), fuzzy theory and doubly spectral feature, as study on the isolated word recognition system of speaker-independent. In the proposed paper, LPC cepstrum coefficients and regression coefficients of LPC cepstrum as doubly spectral feature be used. And, training data are divided several section and first section is generated codebook of VQ, and then is obtained multi-observation sequences by order of large propabilistic values based on fuzzy nile from the codebook of the first section. Thereafter, this observation sequences of first section is trained and is recognized a word to be obtained highest probaility by same concept. Besides the speech recognition experiments of proposed method, we experiment the other methods under the equivalent environment of data and conditions. In the whole experiment, it is proved that the proposed method is superior to the others in recognition rate.

  • PDF

Verification of Normalized Confidence Measure Using n-Phone Based Statistics

  • Kim, Byoung-Don;Kim, Jin-Young;Na, Seung-You;Choi, Seung-Ho
    • Speech Sciences
    • /
    • v.12 no.1
    • /
    • pp.123-134
    • /
    • 2005
  • Confidence measure (CM) is used for the rejection of mis-recognized words in an automatic speech recognition (ASR) system. Rahim, Lee, Juang and Cho's confidence measure (RLJC-CM) is one of the widely-used CMs [1]. The RLJC-CM is calculated by averaging phone-level CMs. An extension of the RLJC-CM was achieved by Kim et al [2]. They devised the normalized CM (NCM), which is a statistically normalized version of the RLJC-CM by using the tri-phone based CM normalization. In this paper we verify the NCM by generalizing tri-phone to n-phone unit. To apply various units for the normalization, mono-phone, tri-phone, quin-phone and $\infty$-phone are tested. By the experiments in the domain of the isolated word recognition we show that tri-phone based normalization is sufficient enough to enhance the rejection performance of the ASR system. Also we explain the NCM in regard to two class pattern classification problems.

  • PDF

An Adaptive Learning Rate with Limited Error Signals for Training of Multilayer Perceptrons

  • Oh, Sang-Hoon;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.22 no.3
    • /
    • pp.10-18
    • /
    • 2000
  • Although an n-th order cross-entropy (nCE) error function resolves the incorrect saturation problem of conventional error backpropagation (EBP) algorithm, performance of multilayer perceptrons (MLPs) trained using the nCE function depends heavily on the order of nCE. In this paper, we propose an adaptive learning rate to markedly reduce the sensitivity of MLP performance to the order of nCE. Additionally, we propose to limit error signal values at out-put nodes for stable learning with the adaptive learning rate. Through simulations of handwritten digit recognition and isolated-word recognition tasks, it was verified that the proposed method successfully reduced the performance dependency of MLPs on the nCE order while maintaining advantages of the nCE function.

  • PDF

A New Hidden Error Function for Layer-By-Layer Training of Multi layer Perceptrons (다층 퍼셉트론의 층별 학습을 위한 중간층 오차 함수)

  • Oh Sang-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.364-370
    • /
    • 2005
  • LBL(Layer-By-Layer) algorithms have been proposed to accelerate the training speed of MLPs(Multilayer Perceptrons). In this LBL algorithms, each layer needs a error function for optimization. Especially, error function for hidden layer has a great effect to achieve good performance. In this sense, this paper proposes a new hidden layer error function for improving the performance of LBL algorithm for MLPs. The hidden layer error function is derived from the mean squared error of output layer. Effectiveness of the proposed error function was demonstrated for a handwritten digit recognition and an isolated-word recognition tasks and very fast learning convergence was obtained.

  • PDF

Confidence Measure for Utterance Verification in Noisy Environments (잡음 환경에서의 인식 거부 성능 향상을 위한 신뢰 척도)

  • Park, Jeong-Sik;Oh, Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2006.11a
    • /
    • pp.3-6
    • /
    • 2006
  • This paper proposes a confidence measure employed for utterance verification in noisy environments. Most of conventional approaches estimate the proper threshold of confidence measure and apply the value to utterance rejection in recognition process. As such, their performance may degrade for noisy speech since the threshold can be changed in noisy environments. This paper presents further robust confidence measure based on the multi-pass confidence measure. The isolated word recognition based experimental results demonstrate that the proposed method outperforms conventional approaches as utterance verifier.

  • PDF