• Title/Summary/Keyword: Isolated grid

Search Result 73, Processing Time 0.04 seconds

Augmenting external surface pressures' predictions on isolated low-rise buildings using CFD simulations

  • Md Faiaz, Khaled;Aly Mousaad Aly
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.255-274
    • /
    • 2023
  • The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an isolated building are provided based on revised findings. Moving on to the second part, the Silsoe cube model is examined within a horizontally homogeneous computational domain using more accurate turbulence models, such as Large Eddy Simulation (LES) and hybrid RANS-LES models. For computational efficiency, transient simulation settings are employed, building upon previous studies by the authors at the Windstorm Impact, Science, and Engineering (WISE) Lab, Louisiana State University (LSU). An optimal meshing strategy is determined for LES based on a grid convergence study. Three hybrid RANS-LES cases are investigated to achieve desired enhancements in the distribution of mean pressure coefficients on the Silsoe cube. In the final part, a 1:10 scale model of the TTU building is studied, incorporating the insights gained from the second part. The generated flow characteristics, including vertical profiles of mean velocity, turbulence intensity, and velocity spectra (small and large eddies), exhibit good agreement with full-scale (TTU) measurements. The results indicate promising roof pressures achieved through the careful consideration of meshing strategy, time step, domain size, inflow turbulence, near-wall treatment, and turbulence models. Moreover, this paper demonstrates an improvement in mean roof pressures compared to other state-of-the-art studies, thus highlighting the significance of CFD simulations in building aerodynamics.

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

A 3.3kW Bi-directional EV Charger with V2G and V2H function (V2G-V2H 기능을 갖는 3.3kW급 전기자동차용 양방향 충전기)

  • Jung, Se-Hyung;Hong, Seok-Yong;Park, Jun-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • This paper proposes a 3.3-kW bi-directional EV charger with V2G and V2H functions. The bi-directional EV charger consists of a DC-DC converter and a DC-AC inverter. The proposed EV charger is suitable for wide battery voltage control due to the two-stage configuration of the DC-DC converter. By employing a fixed-frequency series loaded resonant converter as the isolated DC-DC converter, zero-current-switching can be achieved regardless of battery voltage variation, load variation, and power flow. A 3.3-kW prototype of the proposed EV charger has been built and verified with experiments, and indicates a maximum efficiency of 94.39% and rated efficiency of 94.23%.

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette-Poiseuille flow

  • Sharma, Swati;Maiti, Dilip K.;Alam, Md. Mahbub;Sharma, Bhupendra K.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • A heated square cylinder (with height $A^*$) is kept parallel to the cold wall at a fixed gap height $0.5A^*$ from the wall. Another adiabatic rectangular cylinder (of same height $A^*$ and width $0.5A^*$) is placed upstream in an inline tandem arrangement. The spacing between the two cylinders is fixed at $3.0A^*$. The inlet flow is taken as Couette-Poiseuille flow based non-linear velocity profile. The conventional fluid (also known as base fluid) is chosen as water (W) whereas the nanoparticle material is selected as $Al_2O_3$. Numerical simulations are performed by using SIMPLE algorithm based Finite Volume approach with staggered grid arrangement. The dependencies of hydrodynamic and heat transfer characteristics of the cylinder on non-dimensional parameters governing the nanofluids and the fluid flow are explored here. A critical discussion is made on the mechanism of improvement/reduction (due to the presence of the upstream cylinder) of heat transfer and drag coefficient, in comparison to those of an isolated cylinder. It is observed that the heat transfer increases with the increase in the non-linearity in the incident velocity profile at the inlet. For the present range studied, particle concentration has a negligible effect on heat transfer.

Examination of excess electricity generation patterns in South Korea under the renewable initiative for 2030

  • Kim, Philseo;Cho, So-Bin;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2883-2897
    • /
    • 2022
  • According to the Renewable Energy 3020 Implementation Plan announced in 2017 by the South Korean government, the electricity share of renewable energy will be expanded to 20% of the total electricity generation by 2030. Given the intermittency of electricity generation from renewable energy, realization of such a plan presents challenges to managing South Korea's isolated national electric grid and implies potentially large excess electricity generation in certain situations. The purpose of this study is: 1) to develop a model to accurately simulate the effects of excess electricity generation from renewables which would arise during the transition, and 2) to propose strategies to manage excess electricity generation through effective utilization of domestic electricity generating capabilities. Our results show that in periods of greater PV and wind power, namely the spring and fall seasons, the frequency of excess electricity generation increases, while electricity demand decreases. This being the case, flexible operation of coal and nuclear power plants along with LNG and pumped-storage hydroelectricity can be used to counterbalance the excess electricity generation from renewables. In addition, nuclear energy plays an important role in reducing CO2 emissions and electricity costs unlike the fossil fuel-based generation sources outlined in the 8th Basic Plan.

Experimental and analytical study of a new seismic isolation device under a column

  • Benshuai Liang;Guangtai Zhang;Mingyang Wang;Jinpeng Zhang;Jianhu Wang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.415-428
    • /
    • 2023
  • Low-cost techniques with seismic isolation performance and excellent resilience need to be explored in the case of rural low-rise buildings because of the limited buying power of rural residents. As an inexpensive and eco-friendly isolation bearing, scrap tire pads (STPs) have the issue of poor resilience. Thus, a seismic isolation system under a column (SISC) integrated with STP needs to be designed for the seismic protection of low-rise rural buildings. The SISC, which is based on a simple exterior design, maintains excellent seismic performance, while the mechanical behavior of the internal STP provides elastic resilience. The horizontal behaviors of the SISC are studied through load tests, and its mechanical properties and the intrinsic mechanism of the reset ability are discussed. Results indicate that the average residual displacement ratio was 24.59%, and the reset capability was enhanced. Comparative experimental and finite element analysis results also show that the load-displacement relationship of the SISC was essentially consistent. The dynamic characteristics of isolated and fixed-base buildings were compared by numerical assessment of the response control effects, and the SISC was found to have great seismic isolation performance. SISC can be used as a low-cost base isolation device for rural buildings in developing countries.

Filtering Airborne Laser Scanning Data by Utilizing Adjacency Based on Scan Line (스캔 라인 기반의 인접 관계를 이용한 항공레이저측량 자료의 필터링)

  • Lee, Jeong-Ho;Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • This study aims at filtering ALS points into ground and non-ground effectively through labeling and window based algorithm by utilizing 2D adjacency based on scan line. Firstly, points adjacency is constructed through minimal search based on scan line. Connected component labeling algorithm is applied to classify raw ALS points into ground and non-ground by utilizing the adjacency structure. Then, some small objects are removed by morphology filtering, and isolated ground points are restored by IDW estimation. The experimental results shows that the method provides good filtering performance( about 97% accuracy) for diverse sites, and the overall processing takes less time than converting raw data into TIN or raster grid.

Reverse-Link Performance of Synchronous Cellular DS-CDMA Networks in Dispersive Rician Multipath Fading Channels (디스퍼시브 리시안 다중경로 페이딩 채널에서 동기식 셀룰라 DS-CDMA, 네트워크의 역방향링크 성능)

  • Hwang Seung-Hoon;Hanzo Lajos
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.722-728
    • /
    • 2005
  • In this paper, the reverse-link performance of synchronous DS-CDMA cellular networks is investigated in Rician multipath fading environments. The system's performance is evaluated in terms of the achievable average bit error rate BER) and the user capacities of two different network layouts, namely those of a uniform grid of hexagonal multiple cells and a single isolated cell. In the multiple-cell scenario, the impact of the other cells' interference on the attainable capacity of the synchronous DS-CDMA uplink is investigated. Upon comparing both networks to a conventional asynchronous CDMA system, we demonstrate an achievable user capacity gain of $25\%$ to $56\%$ for synchronous uplink transmissions over that of the corresponding asynchronous transmission scenario at BER = $10^{-3}$.

A Study on the Operation Strategies of Multi-Infeed HVDC System in Jeju Island Power System (제주지역 계통특성을 고려한 다기(Multi-Infeed) HVDC 시스템 운전 방안에 관한 연구)

  • Lee, Seung-Yeup;Yoon, Min-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1675-1681
    • /
    • 2017
  • As recently the demand on electric power has been increasing, the requirement of power supply reliability has been increased. Accordingly, the number of HVDC transmission systems in the world has been steadily increased, which have been installed in the power system to transmit a large capacity power to the long distant and interconnect the power grid between different countries. etc. #1 HVDC Transmission System was installed between Haenam and Jeju island in 1998, which is the first HVDC system furnished in korea. and has been operated until now. Before #1 HVDC Transmission System being installed, the power system of the Jeju Island is a isolated power system from that of Korea mainland. After the construction of #1 HVDC the system has made the Jeju power system more reliable and also been able to supply the mainland power, which was cheaper than that of Jeju island, to Jeju island. The construction of additional HVDC transmission system between mainland and the Jeju Island has been currently underway to cope with recent changes of the power market of the Jeju island, for examples the increase of power demand and the capacity of wind power generation. etc. #2 HVDC Transmission System construction was completed in 2012. #3 HVDC Transmission System will be also installed according to the plan. If all goes as planned, the Jeju power system will be operated with Multi-Infeed HVDC system connected to mainland power system. So the additional studies are needed in order to maintain the stability of the Jeju power system and get the efficiency of the Multi-Infeed HVDC system. Therefore, in this paper, the optimal operation strategies of the Multi-Infeed HVDC system between the mainland of Korea and the Jeju are suggested to ensure the stability of the power system in Jeju Island when the Multi-Infeed HVDC system is operated between two power system.