• 제목/요약/키워드: Isolated DC-DC converter

검색결과 211건 처리시간 0.022초

30kV 절연성능을 갖는 고절연 DC-DC 컨버터에 관한 연구 (A study and implementation of a 30kV highly isolated DC-DC converter)

  • 김정우;부한영;조영훈;김호성;김주용
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.355-356
    • /
    • 2017
  • In this paper, a highly isolated DC-DC converter is designed as a power supply, and an insulator-molded transformer is used to achieve high insulation performance. Finally, the insulation performance of the power supply was verified by experimental results.

  • PDF

절연형 DCM DC-DC 컨버터에 관한 연구 (A Study on Isolated DC-DC Converter of DCM)

  • 곽동걸;이봉섭;김춘삼;심재선;유주희;손재현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.15-16
    • /
    • 2010
  • This paper is study on a high efficiency DC-DC converter of discontinuous conduction mode (DCM) added electric isolation. The converters of high efficiency are generally made that the power losses of the used semiconductor switching devices is minimized. To achieve high efficiency system, the proposed converter is constructed by using a quasi resonant circuit. The control switches using in the converter are operated with soft switching by quasi resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the system is high. The proposed converter is also added electric isolation which is used a pulse transformer. When the power conversion system is required electric isolation, the proposed converter is adopted with the converter system development of high efficiency. The soft switching operation and the system efficiency of the proposed converter are verified by digital simulation and experimental results.

  • PDF

A Study on the Modeling and Control Method of PWM DC/DC Converter with Isolated two outputs

  • Jang Sang-Hyun;Yoo Ji-Yoon;Lee Dong-Yun;Choy Ick;Song Joong-Ho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.291-294
    • /
    • 2001
  • This paper presents the circuit modeling and control methods of PWM DC/DC converter with isolated dual outputs. The dual output converter consists of a transformer with a single secondary winding and two switches. The proposed control algorithm is that required inductor current according to the loads is feed-forwarded to the PI current controller. The proposed control method has better response characteristics than conventional PI control method at load change.

  • PDF

Performance Improvement of Isolated High Voltage Full Bridge Converter Using Voltage Doubler

  • Lee, Hee-Jun;Shin, Soo-Cheol;Hong, Seok-Jin;Hyun, Seung-Wook;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2224-2236
    • /
    • 2014
  • The performance of an isolated high voltage full bridge converter is improved using a voltage doubler. In a conventional high voltage full bridge converter, the diode of the transformer secondary voltage undergoes a voltage spike due to the leakage inductance of the transformer and the resonance occurring with the parasitic capacitance of the diode. In addition, in the phase shift control, conduction loss largely increases from the freewheeling mode because of the circulating current. The efficiency of the converter is thus reduced. However, in the proposed converter, the high voltage dual converter consists of a voltage doubler because the circulating current of the converter is reduced to increase efficiency. On the other hand, in the proposed converter, an input current is distributed when using parallel input / serial output and the output voltage can be doubled. However, the voltages in the 2 serial DC links might be unbalanced due to line impedance, passive and active components impedance, and sensor error. Considering these problems, DC injection is performed due to the complementary operations of half bridge inverters as well as the disadvantage of the unbalance in the DC link. Therefore, the serial output of the converter needs to control the balance of the algorithm. In this paper, the performance of the conventional converter is improved and a balance control algorithm is proposed for the proposed converter. Also, the system of the 1.5[kW] PCS is verified through an experiment examining the operation and stability.

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

A Non-isolated High Step-up DC/DC Converter with Low EMI and Voltage Stress for Renewable Energy Applications

  • Baharlou, Solmaz;Yazdani, Mohammad Rouhollah
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1187-1194
    • /
    • 2017
  • In this paper, a high step-up DC-DC PWM converter with continuous input current and low voltage stress is presented for renewable energy application. The proposed converter is composed of a boost converter integrated with an auxiliary step-up circuit. The auxiliary circuit uses an additional coupled inductor and a balancing capacitor with voltage doubler and switching capacitor technique to achieve high step-up voltage gain with an appropriate switch duty cycle. The switched capacitors are charged in parallel and discharged in series by the coupled inductor, stacking on the output capacitor. In the proposed converter, the voltage stress on the main switch is clamped, so a low voltage switch with low ON resistance can be used to reduce the conduction loss which results in the efficiency improvement. A detailed discussion on the operating principle and steady-state analyses are presented in the paper. To justify the theoretical analysis, experimental results of a 200W 40/400V prototype is presented. In addition, the conducted electromagnetic emissions are measured which shows a good EMC performance.

전류 불연속 모드로 동작하는 1단 방식의 역률 보상 AC/DC 포워드 컨버터 (A Single-Stage PFC AC/DC Forward Converter With Semi-automatic Current Shaping)

  • 강필순;김원호;박성준;김철우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.319-322
    • /
    • 1999
  • This paper presents a novel single-stage Power Factor Corrected(PFC) AC/DC forward converter with semi-automatic current shaping in order to achieve the unity power factor and an isolated output. Since the proposed circuit is combined a boost converter used for PFCs with a forward converter used for DC to DC conversion, the over-all size of system could be reduced. And thanks to the zero voltage switching(ZVS) in both switches, the voltage stress can be reduced considerably. A simple auxiliary circuit adopted into the secondary of transformer is composed of lossless components for reducing surge voltage. A prototype which has tow IGBT(Insulated Gate Bypolar Transistor) modules as switching device is manufactured to evaluate the proposed topology. The characteristics of the proposed circuit are tested, and the validity is verified by experimental results.

  • PDF

V2G-V2H 기능을 갖는 3.3kW급 전기자동차용 양방향 충전기 (A 3.3kW Bi-directional EV Charger with V2G and V2H function)

  • 정세형;홍석용;박준성;최세완
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.31-37
    • /
    • 2015
  • This paper proposes a 3.3-kW bi-directional EV charger with V2G and V2H functions. The bi-directional EV charger consists of a DC-DC converter and a DC-AC inverter. The proposed EV charger is suitable for wide battery voltage control due to the two-stage configuration of the DC-DC converter. By employing a fixed-frequency series loaded resonant converter as the isolated DC-DC converter, zero-current-switching can be achieved regardless of battery voltage variation, load variation, and power flow. A 3.3-kW prototype of the proposed EV charger has been built and verified with experiments, and indicates a maximum efficiency of 94.39% and rated efficiency of 94.23%.

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

이차전지 충방전용 직류-직류 변환기에 관한 연구 (A Study on the DC-DC Converter to Charge and Discharge Secondary Batteries)

  • 채수용;서영민;정대택;윤덕용;홍순찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.235-237
    • /
    • 2006
  • This paper proposes a DC-DC converter which is able to charge and discharge secondary batteries. The converter operates as a double-ended forward converter in charging process and as electrical isolated boost converter in discharging process. The converter is designed for continuous current operation. The switching frequency is selected as 100kHz to reduce the size of both the inductor and the capacitor.

  • PDF