• Title/Summary/Keyword: Isoform

Search Result 325, Processing Time 0.032 seconds

Effects of Relative Lysyl Oxidase and Hydrogen Peroxide on Odontoblastic Differentiation (인간치수세포 분화과정에서 과산화수소에 대한 Lysyl Oxidase의 역할)

  • Lee, Hwa-Jeong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Although it has been reported that lysyl oxidase (LOX) is involved in odontoblastic differentiation, the role of LOX on odontoblastic differentiation by hydrogen peroxide ($H_2O_2$) have not been clarified. In the present study, we investigated whether $H_2O_2$, reactive oxygen species (ROS), is modulated the messenger RNA (mRNA) expression and activity of LOX during odontoblastic differentiation of human dental pulp (HDP) cells. The mRNA expression was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, and LOX enzyme activity was measured by high sensitive fluorescent assay. Expression of the odontoblastic differentiation marker genes were assessed in the presence and absence of specific small interfering RNAs (siRNAs) of the LOX and LOXL. The $H_2O_2$-induced mRNA expression of LOX family was significant reduction of LOX, LOXL, and LOXL3 mRNA levels in HDP cells. LOX enzyme activity was increased at $H_2O_2$ 0.3 mM for 24 hours. The mRNA expression of alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) was inhibited by LOX- and LOXL-specific siRNAs whereas the mRNA expression of dentin matrix protein1 (DMP1), and dentin sialophosphoprotein (DSPP) was inhibited by LOX-specific siRNA. In LOX enzyme activity, siRNA-induced knockdown of both LOX and LOXL inhibited the total amine oxidase activity in HDP cells, as in the case of mRNA expression. In conclusion, the essential role of $H_2O_2$ on odontoblastic differentiation suggests that its regulation by LOX may have pharmacologic importance in HDP cells.

Inhibition of Drug-metabolizing Enzyme and Drug Transporter by Major Components of Phellodendri cortex (황백의 주요 구성 화합물에 의한 약물대사효소 및 약물수송단백 저해능 평가)

  • Ku, Hei-Young;Kim, Hyunmi;Shon, Ji-Hong;Liu, Kwang-Hyeon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.213-217
    • /
    • 2006
  • We evaluated the potential of major components of Phellodendri cortex to inhibit the activities of CYP2D6 and p-glycoprotein. The abilities of berberine, palmatine, limonin, and rutaecarpine to inhibit CYP2D6-mediated dextromethorphan O-demethylation and calcein AM accumulation were tested using human liver microsomes and L-MDR1 cell, respectively. Berberine strongly inhibited CYP2D6 isoform activity, whereas limonin and reuaecarpine did not. The $IC_{50}$ value of berberine was reduced after preincubation with microsomes in the presence of NADPH generating system, suggesting that berberine is a mechanism based inhibitor. In addition, all chemicals tested, didn't show inhibitory effect on p-glycoprotein activity. These results suggest that berberine has potential to inhibit CYP2D6 activity in vitro. Therefore, in vivo studies investigating the interactions between berberine and CYP2D6 substrates are necessary to determine whether inhibition of CYP2D6 activity by berberine is clinically relevant.

  • PDF

PRIP, a Novel Ins(1,4,5)P3 Binding Protein, Functional Significance in Ca2+ Signaling and Extension to Neuroscience and Beyond

  • Kanematsu, Takashi;Takeuchi, Hiroshi;Terunuma, Miho;Hirata, Masato
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2005
  • Investigation of chemically synthesized inositol 1,4,5-trisphosphate [$Ins(1,4,5)P_3$] analogs has led to the isolation of a novel binding protein with a molecular size of 130 kDa, characterized as a molecule with similar domain organization to phospholipase C-${\delta}1$ (PLC-${\delta}1$) but lacking the enzymatic activity. An isoform of the molecule was subsequently identified, and these molecules have been named PRIP (PLC-related, but catalytically inactive protein), with the two isoforms named PRIP-1 and -2. Regarding its ability to bind $Ins(1,4,5)P_3$ via the pleckstrin homology domain, the involvement of PRIP-1 in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling was examined using COS-1 cells overexpressing PRIP-1 and cultured neurons prepared from PRIP-1 knock-out mice. Yeast two hybrid screening of a brain cDNA library using a unique N-terminus as bait identified GABARAP ($GABA_A$ receptor associated protein) and PP1 (protein phosphatase 1), which led us to examine the possible involvement of PRIP in $GABA_A$ receptor signaling. For this purpose PRIP knock-out mice were analyzed for $GABA_A$ receptor function in relation to the action of benzodiazepines from the electrophysiological and behavioral aspects. During the course of these experiments we found that PRIP also binds to the b-subunit of $GABA_A$ receptors and PP2A (protein phosphtase 2A). Here, we summarize how PRIP is involved in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling and $GABA_A$ receptor signaling based on the characteristics of binding molecules.

Isolation and Characterization of a Novel Calcium/Calmodulin-Dependent Protein Kinase, AtCK, from Arabidopsis

  • Jeong, Jae Cheol;Shin, Dongjin;Lee, Jiyoung;Kang, Chang Ho;Baek, Dongwon;Cho, Moo Je;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.276-282
    • /
    • 2007
  • Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin ($Ca^{2+}/CaM$)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about $Ca^{2+}/CaM$-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative $Ca^{2+}$-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a $Ca^{2+}$-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM $Mn^{2+}$. The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other $Ca^{2+}/CaM$-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and $Ca^{2+}/CaM$-dependent protein kinase), increasing the concentration of calmodulin to more than $3{\mu}M$ suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis $Ca^{2+}/CaM$-dependent protein kinase which is presumably involved in CaM-mediated signaling.

A Novel Pyruvate Kinase M2 Activator Compound that Suppresses Lung Cancer Cell Viability under Hypoxia

  • Kim, Dong Joon;Park, Young Soo;Kim, Nam Doo;Min, Sang Hyun;You, Yeon-Mi;Jung, Yuri;Koo, Han;Noh, Hanmi;Kim, Jung-Ae;Park, Kyung Chan;Yeom, Young Il
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.373-379
    • /
    • 2015
  • Pyruvate kinase M2 isoform (PKM2), a rate-limiting enzyme in the final step of glycolysis, is known to be associated with the metabolic rewiring of cancer cells, and considered an important cancer therapeutic target. Herein, we report a novel PKM2 activator, PA-12, which was identified via the molecular docking-based virtual screening. We demonstrate that PA-12 stimulates the pyruvate kinase activity of recombinant PKM2 in vitro, with a half-maximal activity concentration of $4.92{\mu}M$, and effectively suppresses both anchorage-dependent and -independent growth of lung cancer cells in non-essential amino acid-depleted medium. In addition, PA-12 blocked the nuclear translocalization of PKM2 in lung cancer cells, resulting in the inhibition of hypoxia response element (HRE)-mediated reporter activity as well as hypoxia-inducible factor 1 (HIF-1) target gene expression, eventually leading to the suppression of cell viability under hypoxia. We also verified that the effects of PA-12 were dependent on PKM2 expression in cancer cells, demonstrating the specificity of PA-12 for PKM2 protein. Taken together, our data suggest that PA-12 is a novel and potent PKM2 activator that has therapeutic implications for lung cancer.

Characterization of Monoclonal Antibodies against Human Leukocyte Common Antigen (CD45)

  • Shin, Hyang-Mi;Cho, Woon-Dong;Lee, Geon-Kook;Lee, Seon-Hwa;Lee, Kyung-Mee;Ji, Gil-Yong;Yoon, Sang-Soon;Koo, Ji-Hae;Lee, Ho-Chang;Lee, Ki-Hyeong;Song, Hyung-Geun
    • IMMUNE NETWORK
    • /
    • v.11 no.2
    • /
    • pp.114-122
    • /
    • 2011
  • Background: The leukocyte common antigen (CD45) is a transmembrane-type protein tyrosine phosphatase that has five isoforms. Methods: We generated seven murine mAbs against human CD45 by injecting cells from different origins, such as human thymocytes, PBMCs, and leukemic cell lines. By using various immunological methods including flow cytometry, immunohistochemistry, and immunoprecipitation, we evaluated the reactivity of those mAbs to CD45 of thymus as well as tonsil lysates. Furthermore, we transiently transfected COS-7 cells with each of gene constructs that express five human CD45 isoforms respectively, and examined the specificities of the mAbs against the transfected isoforms. Results: In case of thymocytes, lymphocytes, and monocytes, all the seven mAbs demonstrated positive reactivities whereas none was reactive to erythrocytes and platelets. The majority of immune cells in formalin-fixed paraffin-embedded thymus and tonsil tissues displayed strong membranous immunoreactivity, and the main antigen was detected near 220 kDa in all cases. Among the mAbs, four mAbs (AP4, DN11, SHL-1, and P6) recognized a region commonly present in all the five isoforms. One mAb, YG27, recognized four isoforms (ABC, AB, BC, and O). Two mAbs, P1 and P14, recognized the isoforms that contain exon A encoded regions (ABC and AB). Conclusion: In this study, we confirmed that AP4, DN11, SHL-1, YG27 and P6, are mAbs reactive with the CD45 antigen whereas P1 and P14 are reactive with the CD45RA antigen.

IL-1Ra Elaboration by Colchicine Stimulation in Normal Human Bronchial Epithelial Cells (정상 인체 기관지 상피세포에서 콜히친의 Interleukin-1 수용체 길항제 생성자극)

  • Lee, Jae Hyung;Kim, Sang Heon;Kim, Tae Hyung;Sohn, Jang Won;Yoon, Ho Joo;Shin, Dong Ho;Park, Sung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.145-153
    • /
    • 2007
  • Background: Asthma is a syndrome that is characterized by a variable degree of airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Colchicine is an inexpensive and safe medication with unique anti-inflammatory properties. IL-1Ra (Interleukin-1 receptor antagonist) mediates the anti-inflammatory effect in human inflammatory diseases, including asthma. This study examined whether IL-1Ra mediates the anti-inflammatory effect of colchicine in normal human bronchial epithelial cells (NHBE), RAW 264.7 cells (murine macrophage cell line), and a mouse lung. Methods: NHBE, RAW 264.7 cells and BALB/c mice were stimulated with colchicine, and the increase in the IL-1Ra level was estimated by ELISA, Western analysis and RT-PCR analysis. Results: Colchicine stimulated NHBE and RAW 264.7 cells to release IL-1Ra into the supernatant in a dose-and time-dependent manner. The major isoform of IL-1Ra in NHBE and RAW 264.7 cells is type I icIL-1Ra, and sIL-1Ra, respectively. IL-1Ra up-regulation was blocked by PD98059, a specific inhibitor in MAPK pathways. Colchicine also stimulated the secretion of IL-1Ra into the bronchoalveolar lavage (BAL) fluid of BALB/c mouse. Conclusion: Colchicine stimulates an increase in the IL-1Ra level both in vivo and in vitro, and might have an anti-inflammatory effect.

The Scaffolding Protein WAVE1 Associates with Kinesin 1 through the Tetratricopeptide Repeat (TPR) Domain of the Kinesin Light Chain (KLC) (Kinesin Light Chain (KLC)의 Tetratricopeptide Repeat (TPR) 도메인을 통한 Scaffold 단백질 WAVE1과 Kinesin 1의 결합)

  • Jang, Won Hee;Jeong, Young Joo;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.963-969
    • /
    • 2016
  • Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motor proteins essential for the intracellular transport of organelles and protein complexes in cells. Kinesin 1 is a member of those KIFs that transport various cargoes, including organelles, synaptic vesicles, neurotransmitter receptors, cell signaling molecules, and mRNAs through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) are non-motor subunits that associate with the kinesin heavy chain (KHC) dimer. KLCs interact with many different binding proteins, but their particular binding proteins have not yet been fully identified. We used the yeast two-hybrid assay to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1. We found an interaction between the TPR domain of KLC1 and Wiskott-Aldrich syndrome protein family member 1 (WAVE1), a member of the WASP/WAVE family involved in regulation of actin cytoskeleton. WAVE1 bound to the six TPR domain-containing regions of KLC1 and did not interact with KHCs (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. The carboxyl (C)-terminal verprolin-cofilin-acidic (VCA) domain of WAVE1 is essential for interaction with KLC1. Also, other WAVE isoforms (WAVE2 and WAVE3) interacted with KLC1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, WAVE1 co-localized with KLC1 and co-immunoprecipitated with KLC1 and KIF5B. These results suggest that kinesin 1 motor protein may transport WAVE complexes or WAVE-coated cargoes in cells.

Involvement of Brca1 in DNA Interstrand Cross-link Repair Through Homologous Recombination-independent Process (재조합 비의존적 경로를 통한 DNA 사슬간 교차결합 복구에의 Brca1단백질의 기능)

  • Yun, Jean-Ho
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.542-547
    • /
    • 2005
  • Hypersensitivity of cells lacking Brcal to DNA interstrand .ross-link (ICL) agents such as cisplatin and mitomycin C(MMC) implicates the important role of Brcal in cellular response following ICL treatment. Brca1 plays an essential role in DNA double-strand break (DSB) repair through homologous recombination (HR)-dependent and -independent process. Recently, our group has been reported that Brca1 involves in cellular ICL response through HR-dependent repair process (Yun J. et at., Oncogene 2005). In this report, the involvement of Brca1 protein in HR-independent repair process is examined using isogenic $p53^{-/-}\;and\;p53^{-/-}\;Brcal^{-/-}$ mouse embryonic fibroblast (MEF) and psoralen cross-linked reporter reactivation assay. Brcal-deficient MEFs showed significantly low HR-independent repair activity compare to Brca1-proficient MEFs. Hypersensitivity to MMC and ICL reporter repair activity were restored by the reconstitution of Brca1 expression. Interestingly, MEFs expressing exon 11-deleted isoform of Brca1 $(Brca1^{\Delta11/\Delta11})$ showed high resistance to MMC and ICL reporter repair activity comparable to Brca1-reconstituted MEFs. Taken together, these results suggest that Brca1 involves in ICL repair through not only HR-dependent process but also HR-independent process using N-terminal RINC finger domain or C-terminal BRCT domain rather than exon 11 region which mediate interaction with Rad50.

Effect of TSHAC on Human Cytochrome P450 Activity, and Transport Mediated by P-Glycoprotein

  • Im, Yelim;Kim, Yang-Weon;Song, Im-Sook;Joo, Jeongmin;Shin, Jung-Hoon;Wu, Zhexue;Lee, Hye Suk;Park, Ki Hun;Liu, Kwang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1659-1664
    • /
    • 2012
  • TSAHC [4'-(p-toluenesulfonylamido)-4-hydroxychalcone] is a promising antitumorigenic chalcone compound, especially against TM4SF5 (four-transmembrane L6 family member 5)-mediated hepatocarcinoma. We evaluated the potential of TSAHC to inhibit the catalytic activities of nine cytochrome P450 isoforms and of P-glycoprotein (P-gp). The abilities of TSAHC to inhibit phenacetin O-deethylation (CYP1A2), coumarin 6-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylation (CYP2C8), diclofenac 4-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation (CYP3A) were tested using human liver microsomes. The P-gp inhibitory effect of TSAHC was assessed by [$^3H$]digoxin accumulation in the LLCPK1-MDR1 cell system. TSAHC strongly inhibited CYP2C8, CYP2C9, and CYP2C19 isoform activities with $K_i$ values of 0.81, 0.076, and $3.45{\mu}M$, respectively. It also enhanced digoxin accumulation in a dose-dependent manner in the LLCPK1-MDR1 cells. These findings indicate that TSAHC has the potential to inhibit CYP2C isoforms and P-gp activities in vitro. TSAHC might be used as a nonspecific inhibitor of CYP2C isoforms based on its negligible inhibitory effect on other P450 isoforms such as CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, and CYP3A.