• 제목/요약/키워드: Ischemic Damage

검색결과 287건 처리시간 0.022초

청폐사간탕이 탕요유발 흰주의 뇌허혈손상에 미치는 영향 (Effect of Chungpaesagan-tang on Ischemic Damage Induced by Middle Cerebral Artery Occlusion in Diabetic Rats)

  • 정춘근;김은영;신정원;손영주;이현삼;정혁상;손낙원
    • 대한한의학회지
    • /
    • 제26권2호
    • /
    • pp.217-230
    • /
    • 2005
  • Objectives: Chungpaesagan-tang (CPSGT), which is frequently used for treating patients of cerebrovascular disease, has not been reported by clinical doctors concerning the effect of neuronal aptosis caused by brain ischemia. To study the effect of CPSGT on focal cerebral ischemia in normal and diabetic rats and SHR, focal cerebral ischemia was induced by transient MCAO, and after onset CPSGT was administrated. Methods: Rats (Sprague-Dawley) were divided into four groups: sham-operated group, MCA-occluded group, CPSGT­administrated group after MCA occlusion, and normal group. The MCA was occluded by intraluminal method. CPSGT was administrated orally twice (l and 4 hours) after middle cerebral artery occlusion. All groups were sacrificed at 24 hours after the surgery. The brain tissue Was stained with $2\%$ triphenyl tetrazolium chloride (TTC) or $1\%$ cresyl violet solution, to examine effect of CPSGT on ischemic brain tissue. The blood samples were obtained from the heart.~. Tumor necrosis $factor-\alpha$ level and interleukin-6 level of serum was measured from sera using enzyme-linked immunoabsorbent assay (ELISA). Then changes of immunohistochemical expression of $TNF-\alpha$ in ischemic damaged areas were observed. Results: In NC+MCAO+CP and DM+MCAO+CP, CPSGT significantly (p<0.01) decreased the number of neuron cells compared to the control group. CPSGT markedly reduced (p<0.01) the infarct size of the forebrain in distance from the interaural line on cerebral ischemia in diabetic rats. CPSGT significantly reduced the $TNF-\alpha$ expression in penumbra region of damaged hemisphere in diabetic rats. Conclusions: CPSGT had a protective effect on cerebral ischemia in SD rats, especially in diabetic rats compared with normal SD rats.

  • PDF

오갈피나무 뿌리 50% 에탄올 추출물이 항허혈에 미치는 실험적 효과 (Effects of Acanthopanacis Cortex Roots 50% Ethyl Alcohol Extracts on the Cerebral Hemodynamics and Cytokine Production in Cerebral Ischemic Rats)

  • 윤영대;최찬헌;백진웅;김형우;윤대환;김경윤;남기원;김계엽;정현우
    • 동의생리병리학회지
    • /
    • 제21권4호
    • /
    • pp.891-897
    • /
    • 2007
  • This experimental Study was designed to investigate the mechanism of Acanthopanacis Cortex Roots(ACR) 50% ethyl alcohol extract on the improvement of regional cerebral blood flow and cytokines production in cerebral ischemic rats. And was designed to investigate whether ACR inhibits lactate dehydrogenase(LDH) activity in neuronal cells The results were as follows; ACR significantly inhibited LDH activity in neuronal cells. These results suggest that ACR prevents the neuronal death. rCBF was significantly and stably increased by ACR(10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. In cytokine production of serum by drawing from femoral arterial blood at 1 hr after middle cerebral arterial occlusion, experimental group was significantly decreased $IL-1{\beta}$ and $TNF-{\alpha}$ production, and significantly increased IL-10 production compared with control group. In cytokine production of serum by drawing from femoral arterial blood at 1 hr after reperfusion, experimental group was significantly decreased $IL-1{\beta}$ and $TNF-{\alpha}$ production, and significantly increased IL-10 production compared with control group. According to above results, the author suggest that ACR had an anti-ischemic effect through the improvement of cerebral hemodynamics, and inhibitive effect on the brain damage by inhibited $IL-1{\beta}$ and $TNF-{\alpha}$ production, and accelerated IL-10 production.

노령 흰쥐의 뇌허혈 손상시 양격산화탕(凉膈散火湯)이 뇌해마의 c-Fos 및 c-Jun 발현에 미치는 영향 (Effect of Yanggyuksanhwa-tang on c-Fos and c-Jun Expression in Ischemic Damaged Hippocampus of Aged BCAO Rats)

  • 김성준;신정원;손영주;정혁상;원란;손낙원
    • 대한한방내과학회지
    • /
    • 제24권2호
    • /
    • pp.337-347
    • /
    • 2003
  • This study investigated the effect of Yanggyuksanhwa-tang on cerebral ischemia of the rats. Considering age-related impact on cerebral ischemia, aged rats (18 months old) were used for this study. Ischemic damage was induced by the transient occlusion of bilateral common carotid arteries(BCAO) under the hypotension. Yanggyuksanhwa-tang was administered twice orally. Then changes of immunohistochemical expression of c-fos and c-jun in ischemic damaged hippocampus were observed. The BCAO in aged rats led significant increase of c-fos expression in CA1 and DG of hippocampus. While the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of c-fos expression in CA1 hippocampus following BCAO ischemia. Depending on changes of the normalized optical density(NOD) of immunohistochemical c-fos expression, the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of NOD in CA1 and DG of hippocampus. And there was not changes in CA2 and CA3 hippocampus with respect to the control BCAO group. The BCAO in aged rats led significant increase of c-jun expression in CA1 hippocampus. While the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of c-jun expression in CA1 hippocampus following BCAO ischemia. Depending on changes of the NOD of immunohistochemical c-jun expression, the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of NOD in CA1 hippocampus. And there was not changes in CA2, CA3 and DG of hippocampus with respect to the control BCAO group.

  • PDF

Imipramine enhances neuroprotective effect of PEP-1-Catalase against ischemic neuronal damage

  • Kim, Dae-Won;Kim, Duk-Soo;Kim, Mi-Jin;Kwon, Soon-Won;Ahn, Eun-Hee;Jeong, Hoon-Jae;Sohn, Eun-Jeong;Dutta, Suman;Lim, Soon-Sung;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.647-652
    • /
    • 2011
  • The protein transduction domains have been reported to have potential to deliver the exogenous molecules, including proteins, to living cells. However, poor transduction of proteins limits therapeutic application. In this study, we examined whether imipramine could stimulate the transduction efficiency of PEP-1 fused proteins into astrocytes. PEP-1-catalase (PEP-1-CAT) was transduced into astrocytes in a time- and dose-dependent manner, reducing cellular toxicity induced by $H_2O_2$. Additionally, the group of PEP-1-CAT + imipramine showed enhancement of transduction efficiency and therefore increased cellular viability than that of PEP-1-CAT alone. In the gerbil ischemia models, PEP-1-CAT displayed significant neuroprotection in the CA1 region of the hippocampus. Interestingly, PEP-1-CAT + imipramine prevented neuronal cell death and lipid peroxidation more markedly than PEP-1-CAT alone. Therefore, our results suggest that imipramine can be used as a drug to enhance the transduction of PEP-1 fusion proteins to cells or animals and their efficacies against various disorders.

팔물탕이 뇌혈유력학 변화에 미치는 작용기전 (Mechanism of Palmul- Tang on the Change of Cerebral Hemodynamics in Rats)

  • 박철훈;김계엽;정현우
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1714-1721
    • /
    • 2004
  • This experimental study was designed to investigate the mechanism of Palmul-Tang(PMT) on the changes of cerebral hemodynamics in rats. The changes of cerebral hemodynamics in normal rats were as follows ; The PMT-induced increase in regional cerebral blood flow was significantly inhibited by pretreatment with indomethacin(1㎎/㎏, i.p.), an inhibitor of cyclooxygenase, and was inhibited by methylene blue(10㎍/㎏, i.p.), an inhibitor of guanylate cyclase. The PMT-induced dilation in pial arterial diameter was significantly inhibited by pretreatment with indomethacin and methylene blue. The PMT-induced increase in mean arterial blood pressure was significantly inhibited by pretreatment with indomethacin but was increased by methylene blue. This results were suggested that the mechanism of PMT was mediated by cyclooxygenase. The changes of cytokine production in cerebral ischemic rats were as follows ; In cytokine production of serum by drawing from femoral arterial blood after middle cerebral arterial occlusion 1hr, sample group was decreased IL-1β and TNF-α production compared with control group, IL-10 production of sample group was similar to that of control group, but sample group was significantly increased TGF-β production compared with control group. In cytokine production of serum by drawing from femoral arterial blood after reperfusion 1hr, sample group was significantly decreased IL-1β production compared with control group and decreased TNF-α production compared with control group. IL-10 production of sample group was similar to that of control group, but sample group was significantly increased TGF-β production compared with control group. In cytokine production of serum by drawing from femoral arterial blood after reperfusion 4 hrs, sample group was significantly decreased IL-1β production compared with control group, but IL-10 production of sample group was similar to that of control group. sample group was increased TNF-α and TGF-β production compared with control group. These results suggested that PMT had inhibitive effect on the brain damage by inhibiting IL-1β and TNF-α production, but by accelerating TGF-β production. The present author thought that PMT had an anti-ischemic effect through the improvement of cerebral hemodynamics and inhibitive effect on the brain damage.

토끼의 척수 허혈 손상 모델에서 페니토인과 저체온의 신경 보호 효과의 비교 (Neuroprotective Effect of Phenytoin and Hypothermia on a Spinal Cord Ischemic Injury Model in Rabbits)

  • 오삼세;최기영;김원곤
    • Journal of Chest Surgery
    • /
    • 제41권4호
    • /
    • pp.405-416
    • /
    • 2008
  • 배경: 흉부 및 흉복부 대동맥의 수술 중 대동맥 차단은 허혈성 척수 손상에 의한 하반신 마비와 같은 심각한 합병증을 유발할 수도 있어 수술 중 허혈성 척수손상을 예방하기 위한 여러 방법의 연구가 계속 되고 있다. 최근에 허혈성 대뇌 손상 모델에서 신경조직의 막전위 의존성 나트륨채널 길항제가 대뇌 보호 효과가 있다는 보고가 있다. 본 연구는 토끼의 허혈성 척수손상 모델에서 나트륨채널 길항제인 페니토인과 저체온의 척수보호효과를 비교해 보고자 시행되었다. 대상 및 방법: 뉴질랜드산 토끼의 신동맥직하부에서 복부대동맥을 25분간 차단하는 방식으로 척수허혈을 유도하였으며 각 군당 8마리씩 네 군으로 나누었다. 대조군과(S39) 저체온군은(S37) 대동맥 차단시간 동안 직장온도를 각기 $39^{\circ}C$$37^{\circ}C$로 일정하게 유지하면서 $22^{\circ}C$ 생리적 식염수만 2 mL/min의 속도로 연속 주입하였으며, 정상체온 및 저체온 페니토인 군은(P39, P37) 앞의 두 군과 동일한 방법으로 하되 생리적 식염수에 페니토인을 녹여 주입하였다(100 mg/50 mL). 수술 후 24시간 및 72시간이 경과한 다음 Tarlov scoring을 통해 신경학적 평가를 시행하였고 마지막 평가 후에는 객관적으로 신경손상의 정도를 정량화하기 위해 척수를 고정 처리하였다. 결과: 페니토인의 역행성 주입에 따른 심각한 문제는 없었으며 대조군에(S39) 속한 모든 동물은 완전 또는 심한 하반신 마비 소견을 보였다. 페니토인과(P39) 저체온(S37)군 모두 대조군에 비해 신경학적 평가는 유사한 정도로 우수한 결과를 보였다(p<0.05). 조직 병리학적 검사 결과, 대조군에 속한 모든 동물은 척수 회백질에서 심한 신경조직 괴사 때 보이는 전형적인 특징을 보여주었으며, TUNEL 염색에 양성인 신경세포도 높은 빈도로 관찰되었으나, 저체온 또는 페니토인 투여 군에서는 괴사현상이 유의한 정도로 감소하였으며, 상대적으로 매우 낮은 빈도의 TUNL 염색 양성세포가 관찰되었다(p<0.05). 그러나 저체온과 페니토인을 병용했을 때의 부가적인 척수보호효과를 조사해 본 결과 신경학적 평가와 조직병리학적 결과 모두 유의한 수준의 부가적인 효과는 없었다. 걸론: 결론적으로, 토끼의 허혈성 척수 손상 모델을 이용하여 페니토인과 저체온의 신경보호효과를 알아본 결과 신경학적 평가와 조직병리학적 검사 결과 모두 부가적인 효과는 보여주지 못했지만 각각의 경우 유사한 정도의 신경보호효과를 보여주었다.

총순환정지후 혈중 크레아티닌 카이네이즈 BB의 변화에 관한 연구 (Changes of Plasma Creatinine Kinase-BB after Total Circulatory Arrest)

  • 이석재;김용진;김오곤
    • Journal of Chest Surgery
    • /
    • 제31권10호
    • /
    • pp.945-951
    • /
    • 1998
  • 개심술시 총순환정지는 매우 유용한 방법이나 뇌손상등 부작용으로 그 사용이 제한되고 있다. 이러한 뇌손상의 분석에 유용한 지표로서 뇌 허혈성 손상의 특이한 효소인 크레아티닌 카이네이즈 BB(CK-BB)의 유용성을 재고하고 뇌손상에 영향을 미치는 인자들의 분석을 시도하였다. 총순환정지를 이용하여 개심술을 시행한 18명의 환자를 대상으로 하였다. 이들은 다시 비청색증형 심기 형군과 청색증형 심기형군으로 나누어 각각 6명과 12명으로 하였다. 각 환자에서 총순환정지전 및 후 15, 30, 60, 120, 240, 480, 720분에 동맥혈을 채취하여 CK-BB분획을 측정하였고 이와 동시에 혈색소농도, 이 온화 칼슘농도, 혈당량 등을 측정하였다. 총순환정지시간과 CK-BB와 통계적으로 유의한 관계를 보이는 채혈시간은 찾을 수 없었다. 또 총순환 정지전의 문제로 인한 영향을 줄이기 위하여 각각의 측정치에서 총순환정지전의 측정치를 뺀 값을 구하 여 각기 CKBBD15, CKBBD30....등으로 표시하고 상관관계를 구하였으나 역시 유의한 상관관계를 보이 지 않았다. CKBB30과 CKBBD30값은 비청색증형 군과 청색증형 군 사이에 유의한 차이를 보이지 않았 다. CK-BB농도와 혈색소 농도는 유의한 상관관계를 보였다. 단일 채혈에 의한 CK-BB농도의 지표는 순환정지시간과 유의한 관계가 없음이 확인되었다. 또한 청색 증형 심질환군이 총순환정지에 의한 뇌손상에 비청색증형 심질환군에 비해 더 취약하지는 않은 것으로 생각된다.

  • PDF

우황청심원이 중대뇌동맥 결찰로 유발된 뇌허혈에 미치는 영향 (The Effects of Woohwangcheongsim-won on Reperfusion Following Middle Cerebral Artery Occlusion in Rats)

  • 조규선;정승현;신길조;이원철
    • 대한한의학회지
    • /
    • 제22권1호
    • /
    • pp.78-89
    • /
    • 2001
  • Objectives : The purpose of this investigation is to evaluate the effects of Woohwangcheongsim-won on reperfusion following MCA occlusion in rats. Methods : To evaluate the effect of Woohwangcheongsim-won on reperfusion following MCA occlusion, the volume of cerebral ischemia and edema were measured and the change of the CAI pyramidal neuron in the hippocampus was investigated by light microscopy. And the changes of several neurotransmitters and enzymes were investigated with the immunohistochemical methods. Results : 1. The volume of the control group, which was ischemic-damaged was 23.6%, and that of the sample group was 13.5%. 2. The voluminalratio of the right/left hemisphere was 116 in the control group, and that of the sample group was 107. 3. The pyramidal cells of CAI area in the control group were greatly damaged. The cells were changed into discontinuous and unsystematic forms, and nuclei, and cytoplasms were shrunk. On the other hand, the cells of the sample group were less damaged. 4. On the immunohistochemical methods, the sensitivities of GABA, NOS, DBH in the control group were increased, and those of synapsin and $eEF-l{\alpha}$ were decreased as compared with the normal group. NOS and DBH which were negative in the normal group showed positive reaction. On the other hand, the sensitivities of GABA, NOS and DBH in the sample group were decreased, but those of NPY, synapsin, CaMKII and $eEF-l{\alpha}$ were increased as compared with the control group. Conclusions : Woohwangcheongsim-won reduced the volume of cerebral ischemia and edema, and minimized the damage of pyramidal cells. The mechanism was related to protein synthesis, such as synapsin, ${\alpha}CaMKII$ and $eEF-l{\alpha}$, which resist neurotoxicity of glutamate receptors.

  • PDF

The Effects of NEES on PARP Expression and Cell Death in Rat Cerebral Cortex After Ischemic Injury

  • Kim, Sung-Won;Lee, Jung-Sook;Um, Ki-Mai;Kim, Ji-Sung;Lee, Suk-Hee;Choi, Yoo-Rim;Kim, Nyeon-Jun;Kim, Bo-Kyoung;Cho, Mi-Suk;Park, Joo-Hyun;Kim, Soon-Hee
    • 국제물리치료학회지
    • /
    • 제1권2호
    • /
    • pp.107-112
    • /
    • 2010
  • The majority of strokes are caused by ischemia and result in brain tissue damage, leading to problems of the central nervous system including hemiparesis, dysfunction of language and consciousness, and dysfunction of perception. The purpose of this study was to investigate the effects of Poly(ADP-ribose) polymerase(PARP) on necrosis in neuronal cells that have undergone needle electrode electrical stimulation(NEES) prior to induction of ischemia. Ischemia was induced in male SD rats(body weight 300g) by occlusion of the common carotid artery for 5 min, after which the blood was reperfused. After induction of brain ischemia, NEES was applied to Zusanli(ST 36), at 12, 24 and 48 hours. Protein expression was investigated using immuno-reactive cells, which react to PARP antibodies in cerebral nerve cells, and Western blotting. The results were as follows: In the cerebral cortex, the number of PARP reactive cells after 24 hours significantly decreased(p<.05) in the NEES group compared to the GI group. PARP expression after 24 hours significantly decreased(p<.05) in the NEES group compared to the GI group. As a result, NEES showed the greatest effect on necrosis-related PARP immuno-reactive cells 24 hours after ischemia, indicating necrosis inhibition, blocking of neural cell death, and protection of neural cells. Based on the results of this study, NEES can be an effective method of treating dysfunction and improving function of neuronal cells in brain damage caused by ischemia.

  • PDF

Effects of Ginseng Radix on the ischemia-induced 4-vessel occlusion and cognitive impairments in the rat

  • Kim, Young-Ock
    • Journal of Ginseng Research
    • /
    • 제31권1호
    • /
    • pp.44-50
    • /
    • 2007
  • Ginseng powerfully tonifies the original Qi. Ginseng used for insomnia, palpitations with anxiety, restlessness from deficient Qi and blood and mental disorientation. In order to investigate whether Ginseng cerebral ischemia-induced neuronal and cognitive impairments, we examined the effect of Ginseng on ischemia-induced cell death in the hippocampus, and on the impaired learning and memory in the Morris water maze and passive avoidance in rats. Ginseng when administered to rat at a dose of 200 mg/kg i.p. water extracts to 0 minutes and 90 minutes after 4-VO, significantly neuroprotective effects by 86.4% in the hippocampus of treated rats. For behavior test, rats were administered Ginseng (200mg/kg p.o.) daily for two weeks, followed by their training to the tasks. Treatment with Ginseng produced a marked improvement in escape latency to find the platform in the Morris water maze. Ginseng reduced the ischemia-induced learning disability in the passive avoidance. Consistent with behavioral data, treatments with Ginseng reduced jschemia-induced cell death in the hippocampal CA1 area. Oxidative stress is a causal factor in the neuropathogenesis of ischemic-reperfusion injury. Oxidative stress was examined in a rat model of global brain ischemia. The effects of Ginseng on lipid peroxidation (inhibition of the production of malondialdehyde, MDA) in different regions of the rat brain were studied. Ferrous sulfate and ascorbic acid (FeAs) were used to induce lipid peroxidation. The antiperoxidative effect showed 48-72% protection from tissue damage as compared with untreated animals. These results showed that Ginseng have a protective effect against ischemia-induced neuronal loss and learning and memory damage.