Neuroprotective Effect of Phenytoin and Hypothermia on a Spinal Cord Ischemic Injury Model in Rabbits

토끼의 척수 허혈 손상 모델에서 페니토인과 저체온의 신경 보호 효과의 비교

  • Oh, Sam-Sae (Department of Thoracic and Cardiovascular and Cardiovascular Surgery, Sejong General Hospital) ;
  • Choe, Ghee-Young (Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Kim, Won-Gon (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine)
  • 오삼세 (부천세종병원 흉부외과) ;
  • 최기영 (서울대학교 의과대학 분당병원 병리학교실) ;
  • 김원곤 (서울대학교 의과대학 서울대학교병원 흉부외과학교실)
  • Published : 2008.08.05

Abstract

Background: Spinal cord ischemic injury during thoracic and thoracoabdominal aortic surgeries remains a potentially devastating outcome despite using various methods of protection. Neuronal voltage-dependent sodium channel antagonists are known to provide neuroprotection in cerebral ischemic models. This study was designed to compare the neuroprotective effects of phenytoin with those of hypothermia in a rabbit model of spinal cord ischemia. Material and Method: Spinal cord ischemia was induced in New Zealand white rabbits by means of infrarenal aortic cross clamping for 25 minutes. Four groups of 8 animals each were studied. The control group and the hypothermia group received retrograde infusion of saline only ($22^{\circ}C$, 2 mL/min); the normothermic phenytoin group and the hypothermicphenytoin group received retrograde infusion of 100 mg of phenytoin at different rectal temperatures ($39^{\circ}C$ and $37^{\circ}C$, respectively) during the ischemic period. The neurologic function was assessed at 24 and 72 hours after the operation with using the modified Tarlov criteria. The spinal cords were harvested after the final neurologic examination for histopathological examination to objectively quantify the amount of neuronal damage. Result: No major adverse effects were observed with the retrograde phenytoin infusion during the aortic ischemic period. All the control rabbits became severely paraplegic, Both the phenytoin group and the hypothermia group had a better neurological status than did the control group (p < 0.05). The typical morphological changes that are characteristic of neuronal necrosis in the gray matter of the control animals were demonstrated by means of the histopathological examination, whereas phenytoin or hypothermia prevented or attenuated these necrotic phenomena (p < 0.05). The number of motor neuron cells positive for TUNEL staining was significantly reduced, to a similar extent, in the rabbits treated with phenytoin or hypothermia. Phenytoin and hypothermia had some additive neuroprotective effect, but there was no statistical significance between the two on the neurological and histopathological analysis. Conclusion: The neurological and histopathological analysis consistently demonstrated that both phenytoin and hypothermia may afford significant spinal cord protection to a similar extent during spinal cord ischemia in rabbits, although no significant additive effects were noticed.

배경: 흉부 및 흉복부 대동맥의 수술 중 대동맥 차단은 허혈성 척수 손상에 의한 하반신 마비와 같은 심각한 합병증을 유발할 수도 있어 수술 중 허혈성 척수손상을 예방하기 위한 여러 방법의 연구가 계속 되고 있다. 최근에 허혈성 대뇌 손상 모델에서 신경조직의 막전위 의존성 나트륨채널 길항제가 대뇌 보호 효과가 있다는 보고가 있다. 본 연구는 토끼의 허혈성 척수손상 모델에서 나트륨채널 길항제인 페니토인과 저체온의 척수보호효과를 비교해 보고자 시행되었다. 대상 및 방법: 뉴질랜드산 토끼의 신동맥직하부에서 복부대동맥을 25분간 차단하는 방식으로 척수허혈을 유도하였으며 각 군당 8마리씩 네 군으로 나누었다. 대조군과(S39) 저체온군은(S37) 대동맥 차단시간 동안 직장온도를 각기 $39^{\circ}C$$37^{\circ}C$로 일정하게 유지하면서 $22^{\circ}C$ 생리적 식염수만 2 mL/min의 속도로 연속 주입하였으며, 정상체온 및 저체온 페니토인 군은(P39, P37) 앞의 두 군과 동일한 방법으로 하되 생리적 식염수에 페니토인을 녹여 주입하였다(100 mg/50 mL). 수술 후 24시간 및 72시간이 경과한 다음 Tarlov scoring을 통해 신경학적 평가를 시행하였고 마지막 평가 후에는 객관적으로 신경손상의 정도를 정량화하기 위해 척수를 고정 처리하였다. 결과: 페니토인의 역행성 주입에 따른 심각한 문제는 없었으며 대조군에(S39) 속한 모든 동물은 완전 또는 심한 하반신 마비 소견을 보였다. 페니토인과(P39) 저체온(S37)군 모두 대조군에 비해 신경학적 평가는 유사한 정도로 우수한 결과를 보였다(p<0.05). 조직 병리학적 검사 결과, 대조군에 속한 모든 동물은 척수 회백질에서 심한 신경조직 괴사 때 보이는 전형적인 특징을 보여주었으며, TUNEL 염색에 양성인 신경세포도 높은 빈도로 관찰되었으나, 저체온 또는 페니토인 투여 군에서는 괴사현상이 유의한 정도로 감소하였으며, 상대적으로 매우 낮은 빈도의 TUNL 염색 양성세포가 관찰되었다(p<0.05). 그러나 저체온과 페니토인을 병용했을 때의 부가적인 척수보호효과를 조사해 본 결과 신경학적 평가와 조직병리학적 결과 모두 유의한 수준의 부가적인 효과는 없었다. 걸론: 결론적으로, 토끼의 허혈성 척수 손상 모델을 이용하여 페니토인과 저체온의 신경보호효과를 알아본 결과 신경학적 평가와 조직병리학적 검사 결과 모두 부가적인 효과는 보여주지 못했지만 각각의 경우 유사한 정도의 신경보호효과를 보여주었다.

Keywords

References

  1. Kouchoukos NT, Rokkas CK. Hypothermic cardiopulmonary bypass for spinal cord protection: rationale and clinical results. Ann Thorac Surg 1999;67:1940-2. https://doi.org/10.1016/S0003-4975(99)00442-7
  2. Coselli JS, LeMaire SA, Miller CC. Mortality and paraplegia after thoracoabdominal aortic aneurysm repair: a risk factor analysis. Ann Thorac Surg 2000;69:409-14.
  3. Gharagozloo F, Gharagozloo F, Larson J, Dausmann MJ, Neville RF Jr, Gomes MN. Spinal cord protection during surgical procedures on the descending thoracic and thoracoabdominal aorta: review of current techniques. Chest 1996;109:799-809. https://doi.org/10.1378/chest.109.3.799
  4. Crawford ES, Svensson LG, Hess KR, et al. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta. J Vasc Surg 1991;13:36-46. https://doi.org/10.1067/mva.1991.25385
  5. Hains BC, Saab CY, Lo AC, Waxman SG. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Exp Neurol 2004;188:365-77. https://doi.org/10.1016/j.expneurol.2004.04.001
  6. Gangemi JJ, Kern JA, Ross SD, et al. Retrograde perfusion with a sodium channel antagonist provides ischemic spinal cord protection. Ann Thorac Surg 2000;69: 1744-8. https://doi.org/10.1016/S0003-4975(00)01354-0
  7. Weber ML, Taylor CP. Damage from oxygen and glucose deprivation in hippocampal slices is prevented by tetrodotoxin, lidocaine and phenytoin without blockade of action potentials. Brain Res 1994;664:167-77. https://doi.org/10.1016/0006-8993(94)91967-4
  8. Taft WC, Clifton GL, Blair RE, DeLorenzo RJ. Phenytoin protects against ischemia-produced neuronal cell death. Brain Res 1989;483:143-8. https://doi.org/10.1016/0006-8993(89)90045-0
  9. Boxer PA, Cordon JJ, Mann ME, et al. Comparison of phenytoin with noncompetitive N-methyl-D-aspartate antagonists in a model of focal brain ischemia in rat. Stroke 1990;21(Suppl. III):47-51. https://doi.org/10.1161/01.STR.21.1.47
  10. Rataud J, Debarnot F, Mary V, Pratt J, Stutzmann JM. Comparative study of voltage-dependent sodium channel blockers in focal ischaemia and electric convulsions in rodents. Neurosci Lett 1994;172:19-23. https://doi.org/10.1016/0304-3940(94)90652-1
  11. Hains BC, Saab CY, Lo AC, Waxman SG. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Exp Neurol 2004; 188:365-77. https://doi.org/10.1016/j.expneurol.2004.04.001
  12. Svensson LG, Hess KR, D'Agostino RS, et al. Reduction of neurologic injury after high-risk thoracoabdominal aortic operation. Ann Thorac Surg 1998;66:132-8. https://doi.org/10.1016/S0003-4975(98)00359-2
  13. Simpson JI, Eide TR, Schiff GA, et al. Effect of nitroglycerin on spinal cord ischemia after thoracic aortic cross-clamping. Ann Thorac Surg 1996;61:113-7. https://doi.org/10.1016/0003-4975(95)00829-2
  14. Wakamatsu Y, Shiiya N, Kunihara T, Watanabe S, Yasuda K. The adenosine triphosphate-sensitive potassium channel opener nicorandil protects the ischemic rabbit spinal cord. J Thorac Cardiovasc Surg 2001;122:728-33. https://doi.org/10.1067/mtc.2001.115703
  15. Caparrelli DJ, Cattaneo SM, Bethea BT, et al. Pharmacological preconditioning ameliorate neurological injury in a model of spinal cord ischemia. Ann Thorac Surg 2002;74:838-45. https://doi.org/10.1016/S0003-4975(02)03716-5
  16. Tabayashi K, Niibori K, Konno H, Mohri H. Protection from postischemic spinal cord injury by perfusion cooling of the epidural space. Ann Thorac Surg 1993;56:494-8. https://doi.org/10.1016/0003-4975(93)90885-L
  17. Busto R, Dietrich WD, Globus MYT, Valdes I, Sheinberg P, Ginsberg MD. Small differences in intra-ischemic brain damage in gerbils subjected to transient global ischemia. J Cereb Blood Flow Metab 1987;7:729-38. https://doi.org/10.1038/jcbfm.1987.127
  18. Busto R, Globus MYT, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia- induced release of neurotransmitters and free fatty acids in rat brain. Stroke 1989;20:904-10. https://doi.org/10.1161/01.STR.20.7.904
  19. Welsh FA, Sims RE, Harris VA. Mild hypothermia prevents ischemic injury in gerbils hippocampus. J Cereb Blood Flow Metab 1990;10:557-63. https://doi.org/10.1038/jcbfm.1990.98
  20. Crawford ES, Coselli JS, Safi HJ. Partial cardiopulmonary bypass, hypothermic circulatory arrest, and posterolateral exposure for thoracic aortic aneurysm operation. J Thorac Cardiovasc Surg 1987;94:824-7.
  21. Lang-Lazdunski L, Heurteaux C, Dupont H, Widmann C, Lazdunski M. Prevention of ischemic spinal cord injury: comparative effects of magnesium sulfate and riluzole. J Vasc Surg 2000;32:179-89. https://doi.org/10.1067/mva.2000.105960
  22. Han J, Kim N, Joo H, Kim E. Ketamine abolishes ischemic preconditioning through inhibition of K (ATP) channels in rabbit hearts. Am J Physiol Heart Circ Physiol 2002;283:13-21. https://doi.org/10.1152/ajpheart.01064.2001
  23. Zaugg M, Lucchinetti E, Spahn DR, et al. Differential effects of anesthetics on mitochondrial K (ATP) channel activity and cardiomyocyte protection. Anesthesiology 2002;97:15-23. https://doi.org/10.1097/00000542-200207000-00004