• 제목/요약/키워드: Ischemia/Reperfusion

검색결과 449건 처리시간 0.024초

Novel Three-Dimensional Knitted Fabric for Pressure Ulcer Prevention: Preliminary Clinical Application and Testing in a Diabetic Mouse Model of Pressure Ulcers

  • Kim, Sungae;Hong, Jamin;Lee, Yongseong;Son, Daegu
    • Archives of Plastic Surgery
    • /
    • 제49권2호
    • /
    • pp.275-284
    • /
    • 2022
  • Background Population aging has led to an increased incidence of pressure ulcers, resulting in a social burden and economic costs. We developed a three-dimensional knitted fabric (3-DKF) with a pressure-reducing function that can be applied topically in the early stages of pressure ulcers to prevent progression. Methods We evaluated the effects of the 3-DKF in a streptozotocin-induced diabetes mellitus pressure ulcer mouse model, and the fabric was preliminarily applied to patients. Twelve-week-old male C57BL/6 mice were used for the animal experiments. In the pressure ulcer mouse model, an ischemia-reperfusion injury was created using a magnet on the dorsa of the mice. Pressure was measured with BodiTrak before and after applying the 3-DKF to 14 patients at risk of sacral pressure ulcers. Results In the 3-DKF-applied mice group, the ulcers were shallower and smaller than those in the control group. Compared with the mice in the control group, the 3-DKF group had lower platelet-derived growth factor-α and neutrophil elastase expression, as parameters related to inflammation, and increased levels of transforming growth factor (TGF)-β1, TGF-β3, proliferating cell nuclear antigen, and α-smooth muscle actin, which are related to growth factors and proliferation. Additionally, typical normal tissue staining patterns were observed in the 3-DKF group. In the preliminary clinical analysis, the average skin pressure was 26.2 mm Hg before applying the 3-DKF, but it decreased to an average of 23.4 mm Hg after 3-DKF application. Conclusion This study demonstrated that the newly developed 3-DKF was effective in preventing pressure ulcers through testing in a pressure ulcer animal model and preliminary clinical application.

Modulation of Inula racemosa Hook Extract on Cardioprotection by Ischemic Preconditioning in Hyperlipidaemic Rats

  • Arun Kumar Tiwari;Pushpraj S Gupta;Mahesh Prasad;Paraman Malairajan
    • 대한약침학회지
    • /
    • 제25권4호
    • /
    • pp.369-381
    • /
    • 2022
  • Objectives: Hyperlipidemia (HL) is a major cause of ischemic heart diseases. The size-limiting effect of ischemic preconditioning (IPC), a cardioprotective phenomenon, is reduced in HL, possibly because of the opening of the mitochondrial permeability transition pore (MPTP). The objective of this study is to see what effect pretreatment with Inula racemose Hook root extract (IrA) had on IPC-mediated cardioprotection on HL Wistar rat hearts. An isolated rat heart was mounted on the Langendorff heart array, and then ischemia reperfusion (I/R) and IPC cycles were performed. Atractyloside (Atr) is an MPTP opener. Methods: The animals were divided into ten groups, each consisting of six rats (n = 6), to investigate the modulation of I. racemosa Hook extract on cardioprotection by IPC in HL hearts: Sham control, I/R Control, IPC control, I/R + HL, I/R + IrA + HL, IPC + HL, IPC + NS + HL, IPC + IrA+ HL, IPC + Atr + oxidative stress, mitochondrial function, integrity, and hemodynamic parameters are evaluated for each group. Results: The present experimental data show that pretreatment with IrA reduced the LDH, CK-MB, size of myocardial infarction, content of cardiac collagen, and ventricular fibrillation in all groups of HL rat hearts. This pretreatment also reduced the oxidative stress and mitochondrial dysfunction. Inhibition of MPTP opening by Atr diminished the effect of IrA on IPC-mediated cardioprotection in HL rats. Conclusion: The study findings indicate that pretreatment with IrA e restores IPC-mediated cardioprotection in HL rats by inhibiting the MPTP opening.

Superoxide에 의존하여 내피세포에서 유리되는 이완성 물질의 특성에 대한 실험적 연구 (Characterization of Superoxide-dependent Endothelial Relaxing Factor(s))

  • 이기남;이원석;임병용;홍기환
    • 대한약리학회지
    • /
    • 제26권2호
    • /
    • pp.145-152
    • /
    • 1990
  • 최근 본 교실에서는 two-bath system을 이용하여 혈관 내피세포에서 superoxide에 의존한 혈관 이완성 물질을 동정하여 발표하였다. 본 실험에서는 상기 system을 이용하여 돼지의 관상동맥 내피세포에서 유리되는 superoxide에 의존한 이완성 물질이 고양이의 흥부 대동맥 내피 및 소의 대동맥 배양내피세포에서 얻어진 이완성 물질에 의한 이완과 매우 유사함을 관찰하여 다음과 같은 결과를 얻었다. 1. 고양이 흥부 대동맥, 돼지 관상동맥의 내피세포 및 소 대동맥 배양 내피세포 등에서 유리되는 superoxide에 의존한 이완 물질은 모두 유사한 이완 작용을 나타내었다. 2. 돼지 관상 동맥 내피세포에서 유리되는 superoxide 의존성 이완 물질이 고양이의 흥부 대동맥 내피세포나 소의 대동맥 배양 내피세포에서 유리되는 이완 물질과는 다소 다른 점도 있었다. 즉, 돼지 관상동맥 내피세포에서 유리되는 이완 물질의 작용은 catalase나 superoxide dismutase(SOD)에 의하여 억제되었으나, 후자의 두 동맥 내피세포에서 유리되는 이완 물질은 SOD에 의해서만 억제되었다. 3. 이러한 이완성 물질들의 생성은 여러 lipoxygenase억제제인 gossypol, nordihydroguaiaretic acid, AA 861 및 eicosatetraynoic acid 등의 전처치에 의하여 봉쇄되었다. 4. Cyclooxygenase 억제제인 indomethacin이 나 cytochrome P-450 monooxygenase 억제제인 proadifen과 cimetidine에 의하여는 봉쇄되지 아니하였다. 이상의 결과로부터 이러한 이완성 물질들은 비록 각기 다른 종의 동물 모델에서 얻었다고 하더라도 장기에 따라 다소 반응의 차이는 있으나 동질성 이완 물질이며, 나아가 이러한 이완성 물질은 여러 조직의 허혈-재관류 손상에 있어서 병리생리학적으로 관련될 것으로 사료된다.

  • PDF

계혈등(鷄血藤) 추출물이 뇌허혈에 미치는 실험적 연구 (Experimental Study of Patholobi Caulis on the Transient Cerebral Ischemia in Rats)

  • 이상록;최찬헌;백진웅;윤대환;정상훈;한웅;정현우;김계엽
    • 동의생리병리학회지
    • /
    • 제21권5호
    • /
    • pp.1127-1134
    • /
    • 2007
  • The study was designed to investigate the mechanism of Patholoobi Caulis freeze dried powder (PCF) on the regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats and cytokines production ($IL-1{\beta}$, $TNF-{\alpha}$, IL-10, $TGF-{\beta}$) in cerebral ischemic rats. The results in normal rats were as follows ; Increase of PCF-induced rCBF was significantly inhibited by pretreatment with methylene blue (10 ${\mu}g/kg$, I.p.), an inhibitor of guanylate cyclase, and was inhibited by indomethacin (1 mg/kg, i.p.), an inhibitor of cyclooxygenase. Increase of PCF-induced MABP was decreased by pretreatment with methylene blue, but was increased by indomethacin. These results suggested that the mechanism of action PCF was mediated by cyclic 3',5'-guanosine monophosphate. The results in cerebral ischemic rats were as follows ; In cytokine production in serum from femoral arterial blood 1 hr after middle cerebral arterial occlusion, PCF (10 mg/kg. i.p.) significantly decreased $IL-1{\beta}$ and $TNF-{\alpha}$ production, and increased IL-10 production compared with control group. In cytokine production in serum from femoral arterial blood 1 hr 1 hr after reperfusion, PCF (10 mg/kg, i.p.) significantly decreased $IL-1{\beta}$ production, and incresed IL-10 production compared with control group. These results suggested that PCF was significantly and stably increased regional cerebral blood flow by inhibiting $IL-1{\beta}$ production, and by accelerating IL-10 production.

심마비용액의 삼투압을 유지하기위한 첨가 물질들의 차이가 심근보호에 미치는 영향 (The Effect of Additives in the Cardioplegic Solution on the Recovery of Myocardium, Compariosn Among Albumin, Mannitol, and Glucose)

  • 김은기;이종국;이상헌
    • Journal of Chest Surgery
    • /
    • 제24권11호
    • /
    • pp.1058-1067
    • /
    • 1991
  • High potassium cardioplegia is a widely accepted procedure to enhance myocardial protection from ischemic injuries associated with open heart surgery. Maintaining optimum osmolarity of the cardioplegic solution is one of the required conditions for an ideal cardioplegic solution Albumin is an frequently added component for maintaining optimum osmolarity of clinically used cardioplegic solutions. But the source of albumin is human blood so that the supply is limited and the cost of manufacturing is relatively high. Recently there are moves to minimized the use of blood product for fear of blood-associated infections or immunological disorders. In this experiment, we substituted mannitol or glucose for albumin added to the cardioplegic solution which has been used at the Wonju Medical College, To determine whether addition of mannitol or glucose instead of albumin in the cardioplegic solution can produce satisfactory myocardial protection during ischemia, three different groups of isolated rat heart perfused by modified Langendorff technique were studied. Wonju Cardioplegic Solution was selected as a standard high potassium[18mEq/L of K+] cardioplegic solution. Three kinds of cardioplegic solution were made by modifying the composition maintaining the same osmolarity[339$\pm$1mOsm/Kg] Isolated rat heart were perfused initially with retrograde nonworking mode and then changed to working mode. After measuring the heart rate, systolic aortic pressure, aortic flow, coronary flow, ischemic arrest by aorta cross clamp and cardioplegia was made maintaining the temperature of water jacket at 10oC. The heart was rewarmed and reperfused after 60min of ischemic arrest with intermittent cardioplegia at the 30min interval. The time to return of heart beat and the time required to get. Regular heart beat were observed after reperfusion. The recovery rate of the functional variables-heart rate, systolic aortic pressure, aortic flow, coronary flow and cardiac output were calculated and compared among the three groups of different cardioplegia-albumin, mannitol, and glucose. The wet weight and dry weight was measured and the water content of the heart as figured out for comparison. The time to return of heart beat was fastest in the albumin group, The functional recovery rates were best in the albumin group also. In the above conditions, albumin was the best additive to the cardioplegic solution compared to the mannitol or glucose.

  • PDF

Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D2 in the beating rat atrium

  • Zhang, Ying;Li, Xiang;Liu, Li-Ping;Hong, Lan;Liu, Xia;Zhang, Bo;Wu, Cheng-Zhe;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.293-300
    • /
    • 2017
  • Prostaglandin $D_2$ ($PGD_2$) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of $PGD_2$ in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether $PGD_2$ can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. $PGD_2$ (0.1 to $10{\mu}M$) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of $PGD_2$ on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 ($1.0{\mu}M$) and AL-8810 ($1.0{\mu}M$), $PGD_2$ and prostaglandin $F2{\alpha}$ ($PGF2{\alpha}$) receptor antagonists, respectively. Moreover, $PGD_2$ clearly upregulated atrial peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and the $PGD_2$ metabolite 15-deoxy-${\Delta}12$, 14-$PGJ_2$ (15d-$PGJ_2$, $0.1{\mu}M$) dramatically increased atrial ANP secretion. Increased ANP secretions induced by $PGD_2$ and 15d-$PGJ_2$ were completely blocked by the $PPAR{\gamma}$ antagonist GW9662 ($0.1{\mu}M$). PD98059 ($10.0{\mu}M$) and LY294002 ($1.0{\mu}M$), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by $PGD_2$. These results indicated that $PGD_2$ stimulated atrial ANP secretion and promoted positive inotropy by activating $PPAR{\gamma}$ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating $PGD_2$-induced atrial ANP secretion.

Identification of a Marker Protein for Cardiac Ischemia and Reperfusion Injury by Two-Dimensional Gel Electrophoresis and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry

  • Lee, Young-Suk;Kim, Na-Ri;Kim, Hyun-Ju;Joo, Hyun;Kim, Young-Nam;Jeong, Dae-Hoon;Cuong, Dang Van;Kim, Eui-Yong;Hur, Dae-Young;Park, Young-Shik;Hong, Yong-Geun;Lee, Sang-Kyung;Chung, Joon-Yong;Seog, Dae-Hyun;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.207-211
    • /
    • 2004
  • The purpose of the present study was to evaluate the expression of cardiac marker protein in rabbit cardiac tissue that was exposed to ischemic preconditioning (IPC), or ischemiareperfusion injury (IR) using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). We compared 2DE gels of control (uninjured) cardiac tissue with those of IPC and IR cardiac tissue. Expression of one protein was detected in IR heart tissue, however the protein was not detected in the samples of control and IPC tissue. To further characterize the detected protein molecule, the protein in the 2D gel was isolated and subjected to trypsin digestion, followed by MALDI-MS. The protein was identified as myoglobin, which was confirmed also by Western blot analysis. These results are consistent with previous studies of cardiac markers in ischemic hearts, indicating myoglobin as a suitable marker of myocardial injury. In addition, the present use of multiple techniques indicates that proteomic analysis is an appropriate means to identify cardiac markers in studies of IPC and IR.

Increased Expression of ATP-sensitive $K^+$ Channels Improves the Right Ventricular Tolerance to Hypoxia in Rabbit Hearts

  • Choi, Seong-Woo;Ahn, Jun-Seok;Kim, Hyoung-Kyu;Kim, Na-Ri;Choi, Tae-Hoon;Park, Sung-Woo;Ko, En-A;Park, Won-Sun;Song, Dae-Kyu;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권4호
    • /
    • pp.189-194
    • /
    • 2011
  • ATP-sensitive $K^+$ channels ($K_{ATP}$) are major component of preventing ischemia-reperfusion injury. However, there is little information regarding to the expressional difference of $K_{ATP}$ and its function between left and right ventricles. In this study, we measured the lactate dehydrogenase release of rabbit heart slices in vitro and determined the difference of the $K_{ATP}$ expression at the both ventricles by measuring the level of $K_{ATP}$-forming Kir6.2 (OcKir6.2) mRNA using in situ hybridization. The hearts were preconditioned with 15 min hypoxia and reoxygenated for 15 min before a hypoxic period of 60 min, followed by reoxygenation for 180 min. With hypoxic preconditioning (100% $N_2$) with 15 min, left ventricles (LV) showed higher release of LDH comparing with right ventricles (RV). Adding $K_{ATP}$ blocker glibenclamide ($10{\mu}M$) prior to a hypoxic period of 60 min, hypoxic preconditioning effect of RV was more abolished than LV. With in situ hybridization, the optical density of OcKir6.2 was higher in RV. Therefore, we suggest that different $K_{ATP}$ expression between LV and RV is responsible for the different response to hypoxia and hypoxic preconditioning of rabbit hearts.

Regional Differences in Mitochondrial Anti-oxidant State during Ischemic Preconditioning in Rat Heart

  • Thu, Vu Thi;Cuong, Dang Van;Kim, Na-Ri;Youm, Jae-Boum;Warda, Mohamad;Park, Won-Sun;Ko, Jae-Hong;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권2호
    • /
    • pp.57-64
    • /
    • 2007
  • Ischemic preconditioning (IPC) is known to protect the heart against ischemia/reperfusion (IR)-induced injuries, and regional differences in the mitochondrial antioxidant state during IR or IPC may promote the death or survival of viable and infarcted cardiac tissues under oxidative stress. To date, however, the interplay between the mitochondrial antioxidant enzyme system and the level of reactive oxygen species (ROS) in the body has not yet been resolved. In the present study, we examined the effects of IR- and IPC-induced oxidative stresses on mitochondrial function in viable and infarcted cardiac tissues. Our results showed that the mitochondria from viable areas in the IR-induced group were swollen and fused, whereas those in the infarcted area were heavily damaged. IPC protected the mitochondria, thus reducing cardiac injury. We also found that the activity of the mitochondrial antioxidant enzyme system, which includes manganese superoxide dismutase (Mn-SOD), was enhanced in the viable areas compared to the infarcted areas in proportion with decreasing levels of ROS and mitochondrial DNA (mtDNA) damage. These changes were also present between the IPC and IR groups. Regional differences in Mn-SOD expression were shown to be related to a reduction in mtDNA damage as well as to the release of mitochondrial cytochrome c (Cyt c). To the best of our knowledge, this might be the first study to explore the regional mitochondrial changes during IPC. The present findings are expected to help elucidate the molecular mechanism involved in IPC and helpful in the development of new clinical strategies against ischemic heart disease.

Fructose-1,6-diphosphate : The new anti-aging material.

  • Ahn, Soo-Mi;Kim, Ji-Hyun;Lee, Jong-Chan;Lee, Byeong-Gon;Lee, Soo-Hwan;Jung, Jin-Ho;Chang, Ih-Seoup
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.13-34
    • /
    • 2003
  • Fructose-1, 6-diphosphate (FOP), a glycolytic metabolite is reported to ameliorate inflammation and inhibit the nitric oxide production in murine macrophages stimulated with endotoxin. It is also reported that FOP has cytoprotective effects against hypoxia or ischemia/reperfusion injury in brain and heart. In this study, we examined whether FDP has protective effects on UV-induced oxidative damage in skin cell culture system and human skin in vivo. FDP had a protective role in UVB-induced LDH release and ROS accumulation in HaCaT although it did not show direct radical scavenging effect in the experiment using 1, 1-diphenyl-2-picrylhydrazyl (DPPH). FDP also preserved cellular GSH content after UV irradiation in HaCaT and normal human fibroblast culture system. Cellular oxidative stress induces multiple downstream signaling pathways that regulate expression of multiple gene including MMP-1 and collagen, we examined the effects of FDP on UV-induced alteration of these protein expression in fibroblast culture and human skin in vivo. The increased MMP-1 expression in fibroblast and human skin by UV irradiation was significantly decreased by FDP. FDP also prevented the UV-induced decrease of collagen expression in fibroblast and human skin. Moreover, the decreasing the intracellular levels of reducing equivalents in human fibroblast by glutathione (GSH) depletion lowered the UVA dose threshold for reduction of procollagen expression, indicating that the differences of glutathione contents define the susceptibility of fibroblasts towards UV-induced reduction of procollagen expression. FDP also preserved cellular GSH content after UV irradiation, indicating that FDP has protective effects on UV-induced reduction of procollagen expression, which are possibly through maintaining intracellular reducing equivalent. Based on these premises, we examined the effect of daily use of a moisturizer containing FDP on facial wrinkle in comparison with vehicle moisturizer lacking FDP. In the clinical study, FDP significantly decreased facial wrinkle compared with vehicle alone after 6 months of use. Our results suggest that FDP has anti-aging effects in skin by increasing cellular antioxidant system and preventing oxidative signal and inflammatory reaction. Therefore FDP may be useful anti-aging agent for cosmetic purpose.

  • PDF