References
- Podesser B, Wollenek G, Seitelberger R, Siegel H, Wolner E, Firbas W, Tschabitscher M. Epicardial branches of the coronary arteries and their distribution in the rabbit heart: the rabbit heart as a model of regional ischemia. Anat Rec. 1997;247: 521-527. https://doi.org/10.1002/(SICI)1097-0185(199704)247:4<521::AID-AR11>3.0.CO;2-R
- Baker JE, Holman P, Gross GJ. Preconditioning in immature rabbit hearts: role of KATP channels. Circulation. 1999;99: 1249-1254. https://doi.org/10.1161/01.CIR.99.9.1249
- Kloner RA, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. Circulation. 1998;97: 1848-1867. https://doi.org/10.1161/01.CIR.97.18.1848
- Auchampach JA, Grover GJ, Gross GJ. Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res. 1992;26:1054-1062. https://doi.org/10.1093/cvr/26.11.1054
- Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol. 2003; 285:H921-930. https://doi.org/10.1152/ajpheart.00421.2003
- Gross GJ. ATP-sensitive potassium channels and myocardial preconditioning. Basic Res Cardiol. 1995;90:85-88. https://doi.org/10.1007/BF00789438
- Seharaseyon J, Sasaki N, Ohler A, Sato T, Fraser H, Johns DC, O'Rourke B, Marbán E. Evidence against functional heteromultimerization of the KATP channel subunits Kir6.1 and Kir6.2. J Biol Chem. 2000;275:17561-17565. https://doi.org/10.1074/jbc.275.23.17561
- Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, Pucar D, Bienengraeber M, Dzeja PP, Miki T, Seino S, Alekseev AE, Terzic A. Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci U S A. 2002;99:13278-13283. https://doi.org/10.1073/pnas.212315199
- Park SW, Lee SK, Kim JM, Yoon JS, Kim YH. Effects of quetiapine on the brain-derived neurotrophic factor expression in the hippocampus and neocortex of rats. Neurosci Lett. 2006;402:25-29. https://doi.org/10.1016/j.neulet.2006.03.028
- Han J, Kim N, Joo H, Kim E, Earm YE. ATP-sensitive K(+) channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol. 2002;283:H1545-1554. https://doi.org/10.1152/ajpheart.01052.2001
- Lee KW, Norell MS. Cardiogenic shock complicating myocardial infarction and outcome following percutaneous coronary intervention. Acute Card Care. 2008;10:131-143. https://doi.org/10.1080/17482940801983006
- Hochman JS, Buller CE, Sleeper LA, Boland J, Dzavik V, Sanborn TA, Godfrey E, White HD, Lim J, LeJemtel T. Cardiogenic shock complicating acute myocardial infarctionetiologies, management and outcome: a report from the shock trial registry. should we emergently revascularize occluded Coronaries for cardiogenic shock? J Am Coll Cardiol. 2000;36(3 Suppl A):1063-1070. https://doi.org/10.1016/S0735-1097(00)00879-2
- Brodie BR, Stuckey TD, Hansen C, Bradshaw BH, Downey WE, Pulsipher MW. Comparison of late survival in patients with cardiogenic shock due to right ventricular infarction versus left ventricular pump failure following primary percutaneous coronary intervention for ST-elevation acute myocardial infarction. Am J Cardiol. 2007;99:431-435. https://doi.org/10.1016/j.amjcard.2006.09.091
- Shuhaiber HJ, Juggi JS, John V, Yousof AM, Braveny P. Differences in the recovery of right and left ventricular function after ischaemic arrest and cardioplegia. Eur J Cardiothorac Surg. 1990;4:435-440. https://doi.org/10.1016/1010-7940(90)90074-A
- Mehta SR, Eikelboom JW, Natarajan MK, Diaz R, Yi C, Gibbons RJ, Yusuf S. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J Am Coll Cardiol. 2001;37:37-43. https://doi.org/10.1016/S0735-1097(00)01089-5
- Goldstein JA. Right versus left ventricular shock: a tale of two ventricles. J Am Coll Cardiol. 2003;41:1280-1282. https://doi.org/10.1016/S0735-1097(03)00127-X
- Kinch JW, Ryan TJ. Right ventricular infarction. N Engl J Med. 1994;330:1211-1217. https://doi.org/10.1056/NEJM199404283301707
-
Noma A. ATP-regulated
$K^{+}$ channels in cardiac muscle. Nature. 1983;305:147-148. https://doi.org/10.1038/305147a0 - Grover GJ, Sleph PG, Dzwonczyk S. Role of myocardial ATPsensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors. Circulation. 1992;86:1310-1316. https://doi.org/10.1161/01.CIR.86.4.1310
- Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res. 1992;70:223-233. https://doi.org/10.1161/01.RES.70.2.223
- Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marbán E, Nakaya H. Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/ reperfusion injury in mice. J Clin Invest. 2002;109:509-516. https://doi.org/10.1172/JCI0214270
Cited by
- Ischemic Preconditioning Reduces Right Ventricular Infarct Size through Opening of Mitochondrial Potassium Channels vol.123, pp.3, 2011, https://doi.org/10.1159/000342481
- Alterations of Cardiac KATP Channels and Autophagy Contribute in the Late Cardioprotective Phase of Exercise Preconditioning vol.59, pp.5, 2018, https://doi.org/10.1536/ihj.17-003