• Title/Summary/Keyword: Irrigation technique

Search Result 129, Processing Time 0.022 seconds

Multivariate analysis of the cleaning efficacy of different final irrigation techniques in the canal and isthmus of mandibular posterior teeth

  • Yoo, Yeon-Jee;Lee, WooCheol;Kim, Hyeon-Cheol;Shon, Won-Jun;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.3
    • /
    • pp.154-159
    • /
    • 2013
  • Objectives: The aim of this study was to compare the cleaning efficacy of different final irrigation regimens in canal and isthmus of mandibular molars, and to evaluate the influence of related variables on cleaning efficacy of the irrigation systems. Materials and Methods: Mesial root canals from 60 mandibular molars were prepared and divided into 4 experimental groups according to the final irrigation technique: Group C, syringe irrigation; Group U, ultrasonics activation; Group SC, VPro StreamClean irrigation; Group EV, EndoVac irrigation. Cross-sections at 1, 3 and 5 mm levels from the apex were examined to calculate remaining debris area in the canal and isthmus spaces. Statistical analysis was completed by using Kruskal-Wallis test and Mann-Whitney U test for comparison among groups, and multivariate linear analysis to identify the significant variables (regular replenishment of irrigant, vapor lock management, and ultrasonic activation of irrigant) affecting the cleaning efficacy of the experimental groups. Results: Group SC and EV showed significantly higher canal cleanliness values than group C and U at 1 mm level (p < 0.05), and higher isthmus cleanliness values than group U at 3 mm and all levels of group C (p < 0.05). Multivariate linear regression analysis demonstrated that all variables had independent positive correlation at 1 mm level of canal and at all levels of isthmus with statistical significances. Conclusions: Both VPro StreamClean and EndoVac system showed favorable result as final irrigation regimens for cleaning debris in the complicated root canal system having curved canal and/or isthmus. The debridement of the isthmi significantly depends on the variables rather than the canals.

Infrared Estimation of Canopy Temperature as Crop Water Stress Indicator

  • Kim, Minyoung;Kim, Seounghee;Kim, Youngjin;Choi, Yonghun;Seo, Myungchul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.499-504
    • /
    • 2015
  • Decision making by farmers regarding irrigation is critical for crop production. Therefore, the precision irrigation technique is very important to improve crop quality and yield. Recently, much attention has been given to remote sensing of crop canopy temperature as a crop water-stress indicator, because it is a scientifically based and easily applicable method even at field scales. This study monitored a series of time-variant canopy temperature of cucumber under three different irrigation treatments: under-irrigation (control), optimal-irrigation, and over-irrigation. The difference between canopy temperature ($T_c$) and air temperature ($T_a$), $T_c-T_a$, was calculated as an indicator of cucumber water stress. Vapor pressure deficit (VPD) was evaluated to define water stress on the basis of the temperature difference between leaf and air. The values of $T_c-T_a$ was negatively related to VPD; further, cucumber growth in the under- and over-irrigated fields showed water stress, in contrast to that grown in the optimally irrigated field. Thus, thermal infrared measurements could be useful for evaluating crop water status and play an important role in irrigation scheduling of agricultural crops.

A COMPARATIVE STUDY OF THE EFFECT K - FILE AND ULTRASONIC INSTRUMENT IN CLEANING AND SHAPING ROOT CANAL (K-File과 초음파기구의 근관확대 및 세척효과에 대한 비교연구)

  • Kim, Sang-Seop;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.413-420
    • /
    • 1992
  • The purpose of this study was to compare the effectiveness of hand instrumentation with K - file and ultrasonic instrumentation and irrigation system in removing pulpal debris and canal wall planing. 20 mandibular molar teeth were instrumented to size 30 K - file and 20 teeth were instrumented with ultrasonic Suprasson. And Normal Saline and 2.5% NaOCl were used as irrigation solution. All specimens were viewed at the coronal, middle, and apical third of the root canals for the evaluation of the cleaning effect under the multiview microscope. The result were as follows : 1. All of the technique and irrigation solution was effecient in the debris removal and canal wall planing at the cervical and middle thirds of the root canal. 2. All of the techniques and irrigation solutions was less efficient in the debris removal and canal planing at the apical third of the root canal. 3. The debris removal and canal wall planing was depended more on the anatomical variations of the root canal than on the techniques and irrigation solutions.

  • PDF

In vitro apical pressure created by 2 irrigation needles and a multisonic system in mandibular molars

  • Ronald Ordinola-Zapata;Joseph T. Crepps;Ana Arias;Fei Lin
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.14.1-14.7
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the apical pressure generated by 2 endodontic irrigation needles and the GentleWave system in mandibular molars. Materials and Methods: The mesial and distal root canals of 12 mandibular molars were irrigated with a 30-gauge close-end needle or with a 30-gauge open-end needle. Procedures were performed in the mesial and distal canals. The GentleWave procedure and irrigation at 1 mm from the apex in the distal roots using an open-end needle were used, respectively, as negative and positive controls. The apical pressure was measured using a data acquisition pressure setup. Apical pressure exerted by the different needles in the 2 different canal types was statistically compared using 2-way analysis of variance. Results: Significant differences were found in the apical pressure for both needles and the canal type. The lowest values were obtained with close-end needles and in mesial canals. Negative apical pressure values were obtained using GentleWave. Conclusions: The needle and the canal type influenced the apical pressure. The GentleWave procedure produced negative apical pressure.

Assessment of Appropriate Period and Cost(P&C) of Repair and Improvement for Irrigational Structures (논문 - 수리시설물의 적정개보수 주기 및 비용 산정)

  • Lee, Joon-Gu;Kim, Myong-Won;Shin, Tae-Ho
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.142-160
    • /
    • 2011
  • This study was performed to apply the preventive management technique that is known for more economic and preventive for disaster than corrective technique to Repair & Improvement(R&I) Project policy of irrigational facilities. The appropriate periods of R&I Project had been driven to 40yrs, 24yrs, 27yrs, and 29yrs for reservoir, Pumping and drainage pumping station, Diversion weir and Irrigation & drainage canal respectively. The cost of R&I Project for 10 years had been estimated as 616.9 billion won per year including the 85 billion won for the project of 'Disaster prevention and Function continuity'. After the period of 'Improvement all at once', about 30yrs, 421.8 billion won was requested for 'Function continuity'.

  • PDF

PREDICTION OF UNMEASURED PET DATA USING SPATIAL INTERPOLATION METHODS IN AGRICULTURAL REGION

  • Ju-Young;Krishinamurshy Ganeshi
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2004
  • This paper describes the use of spatial interpolation for estimating seasonal crop potential evapotranspiration (PET) and irrigation water requirement in unmeasured evaporation gage stations within Edwards Aquifer, Texas using GIS. The Edwards Aquifer area has insufficient data with short observed records and rare gage stations, then, the investigation of data for determining of irrigation water requirement is difficult. This research shows that spatial interpolation techniques can be used for creating more accurate PET data in unmeasured region, because PET data are important parameter to estimate irrigation water requirement. Recently, many researchers are investigating intensively these techniques based upon mathematical and statistical theories. Especially, three techniques have well been used: Inverse Distance Weighting (IDW), spline, and kriging (simple, ordinary and universal). In conclusion, the result of this study (Table 1) shows the kriging interpolation technique is found to be the best method for prediction of unmeasured PET in Edwards aquifer, Texas.

  • PDF

A Study on Slope Greening Technique Using Eco-Stone -Focused on growth conditions of plant species among treatment blocks- (Eco-Stone을 이용한 사면녹화공법에 관한 연구 -식재식물종의 처리구간 생장상태를 중심으로-)

  • Ahn, Tae Seok;Jo, Hyun-Kil;Ahn, Tae-Won;Kim, Ji-Ho;Chung, Kyung-Jin;Kim, Mi-Kyeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 2004
  • For the slope stability and revegetation of retaining wall, Eco-Stone was built beside a newly constructed road in August, 2002. Eco-Stone blocks were constructed in 4 different combinations of irrigation and soil types. Within the Eco-Stone, planted were 6 species such as Forsythia koreana, Rhododendron mucronulatum, Spiraea prunifolia var. simpliciflora, Rhododendron sp. Euonymus japonica, and Aster koraiensis. Shoot growth was greater on common soils than at a better soil treatment for Forsythia koreana(P<0.01) and Spiraea prunifolia var. simpliciflora(P<0.05), while there were no significant differences for the other species. Biomass increment of the planted species also did not show significant differences between irrigation types, except Rhododendron sp. and Aster koraiensis of which biomass was higher under irrigation than at no irrigation for common soils. Most of the planted individuals were alive, showing survival ratio of 90~97% with no significant differences among treatment blocks. These results imply that the Eco-Stone can be used economically for slope stability and revegetation instead of concrete blocks, without a specific soil and irrigation requirement.

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.

The efficacy of ultrasonic irrigation technique on debris removal during root canal treatment (근관치료 시 초음파 세정 기술을 이용한 잔사 제거의 효율성)

  • Kim, Jeong-Hyeon;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.97-105
    • /
    • 2017
  • Purpose: The purpose of this study was comparing the efficacy of passive irrigation (PI) and passive ultrasonic irrigation (PUI) for ability to remove debriment of canals. Materials and Methods: Mandibular premolars were decoronated and standardized to 16 mm length. After root canal enlargement and half separating longitudinally, standardized groove of 4 mm length, 0.2 mm width and 0.5 mm depth were formed on the dentin wall of one half. Three depressions in the canal wall of the opposite half, 0.3 mm in diameter and 0.5 mm in depth, were formed. After each groove and depression was filled with dentin debris, two sections of each half were reassembled using impression putty material. In group 1 the canals were irrigated with 2.5% NaOCl by PI. In group 2 the canals were irrigated with 2.5% NaOCl by PUI. Before and after root canal irrigation, the root canal wall of the section was taken with a microscope and a digital camera as images. The amount of dentin debris remaining in grooves and depressions was assessed using a scoring system. Results: There was no significant difference between PI and PUI except for the middle 1/3 of the root canal (P = 0.004). Conclusion: At the middle 1/3 of the root canal, PUI removed more dentine debris than PI. But the removal efficiency of dentin debris is not significantly different between the PUI and PI at the apical area of root canal in mandibular premolars.