• Title/Summary/Keyword: Irrigation Area

Search Result 599, Processing Time 0.031 seconds

Factor Analyses for Water Quality Indicators of Streams, Ground Water, and Reservoir in Agricultural Small Catchments of the Han River Basin

  • Park, C-S;Joo, J-H;Jung, Y-S;Yang, J-E
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.382-393
    • /
    • 2000
  • The principal indicators contributing to water qualities was screened by factor analyses, based on the monitored chemical parameters of water quality for various water resources from 1995 to 1999 in the small agricultural catchments of the Han River Basin. Water samples of streams, groundwaters, and reservoirs were taken four times a year from upper (Daegwanryong), middle (Dunnae and Chunchon) and lower (Guri) reaches of Han River Basin. In these areas, the respective type of farming practiced was alpine agriculture and livestocks raising, typical upland and paddy cultivation, and intensive cropping in the plastic film house. Water quality was monitored for twenty-one water quality parameters, including pH, EC, SS, T-N, T-P, COD, cations, anions, and heavy metals. pH, EC and COD of the stream waters were suitable for the Korea irrigation water quality guidelines. However, T-N and T-P concentrations of water samples in four catchments far exceeded the irrigation water guideline. Concentrations of canons and heavy metals in Wangsuk stream in Guri area were higher than those in streams in other areas. Factor analysis revealed that significant correlation was observed for 81 pairs out of 231 water quality indicators of stream water among the $21\;{\times}\;21$ cross correlation matrix of stream water quality indicators. The first factor accounted for 27.01% of the total variation in stream water quality indicators, and high positive factor loadings were shown on EC, K, Na, $NH_4\;^+-N$, $PO_4\;^{3-}$, $SO_4\;^{2-}$, and COD. Fifty-three water quality indicator pairs were significant out of 190 ground water quality parameters. The first factor accounted for 28.54% of the total variation in ground water quality indicators, and high loadings were revealed on EC, Ca, Mg, K, Na, $NH_4\;^+-N$, and $SO_4$. Twenty-nine pairs of reservoir water quality indicators were significant out of 66 pairs. The first factor accounted for 37.06% of the total variation in reservoir water quality indicators, and high loadings were shown on EC, Mg, K, Na, SS, T-P, Cl, and COD. These results demonstrate that EC was the first factor contributing to water quality.

  • PDF

An Observational Study on the Temperature Rising Effects in Water Warming canal and Water Warming Pond (온수로 및 온수지에서의 수온상승효과에 관한 조사연구)

  • 홍종백;홍성범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18˚C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1.The degree of the rise of the water temperature can be decided by $\theta$x=$\theta$o +K L--v.h (T-$\theta$˚)Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2.A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was $\theta$x1 = 16.5 + 15.9(1-e -0.00018x), $\theta$x2 =18.8 + 8.4( 1-e -0.000298x)for the type I. and $\theta$x, = 19.6 + 12.8 ( 1-e -0.00041x) for the type II. 3.It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4.In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made ;Y= 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5.A monthly variation of the water temperature in the water warming canal was the highest in August during the irrigation period and the water temperature rose with the air temperature until August. However, it was blunted after then. 6.A rising degree of water temperature of the practical value in the water warming pond was higher than that of the theoritical equation by 69% for the type I. and 57% for the type II. Accordingly, it was possible to acquire the result near the practical value.$\theta$w-$\theta$o=[1-exp{ -h(1+2$\psi$) . X($\theta$w-$\theta$0)XC Here, C values are 1.69 for the type I. and 1.57 for the type II. 7.It was shown that the effect of the rise of water temperature was favorable when the thermal absorption was to be good by coloring the surface of the water warming pond and removing the bottom osmosis. 8.By enlarging the surface of water in comparison with the depth, and by having dead area of water in the water warming pond, this structure in the water warming pond is helpful for the rise of water temperature.

  • PDF

Integrated Eco-Engineering Design for Sustainable Management of Fecal Sludge and Domestic Wastewater

  • Koottatep, Thammarat;Polprasert, Chongrak;Laugesen, Carsten H.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • Constructed wetlands and other aquatic systems have been successfully used for waste and wastewater treatment in either temperate or tropical regions. To treat waste or wastewater in a sustainable manner, the integrated eco-engineering designs are explained in this paper with 2 case studies: (i) a combination of vertical-flow constructed wetland (CW) with plant irrigation systemfor fecal sludge management and (ii) integrated CW units with landscaping at full-scale application for domestic wastewater treatment. The pilot-scale study of fecal sludge management employed 3 vertical-flow CW units, each with a dimension of $5{\times}5{\times}0.65m$ (width ${\times}$ length ${\times}$ media depth) and planted with cattails (Typha augustifolia). At the solid loading rate of 250 kg total solids (TS)/$m^2.yr$ and a 6-day percolate impoundment, the CW system could achieve chemical oxygen demand (COD), TS and total Kjeldahl nitrogen (TKN) removal efficiencies in the range of 80 - 96%. The accumulated sludge layers of about 80 - 90 cm was found at the CW bed surface after operating the CW units for 7 years, but no clogging problem has been observed. The CW percolate was applied to 16 irrigation Sunflower plant (Helianthus annuus) plots, each with a dimension of $4.5{\times}4.5m$ ($width{\times}length$). In the study, the CW percolate were fed to the treatment plots at the application rate of 7.5 mm/day but the percolate was mixed with tap water at different ratio of 20%, 80% and 100%. Based on a 1-year data of 3-crop plantation were experimented, the contents of Zn, Mn and Cu in soil of the experimental plots were found to increase with increasing in CW percolate ratios. The highest plant biomass yield and oil content of 1,000 kg/ha and 35%, respectively, were obtained from the plots fed with 20% or 50% of the CW percolate, whereas no accumulation of heavy metals in the plant tissues (i.e. leaves, stems and flowers) of the sunflower is found. In addition to the pilot-scale and field experiments, a case study of the integrated CW systems for wastewater treatment at Phi Phi Island (a Tsunami-hit area), Krabi province, Thailand is illustrated. The $5,200-m^2$ CW systems on Phi Phi Island are not only for treatment of $400m^3/day$ wastewater from hotels, households or other domestic activities, but also incorporating public consultation in the design processes, resulting in introducing the aesthetic landscaping as well as reusing of the treated effluent for irrigating green areas on the Island.

  • PDF

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

Altitudinal Pattern of Evapotranspiration and Water Need for Upland Crops in Jeju Island (제주도 지역의 고도에 따른 증발산량 및 용수량 특성 평가)

  • Kim, Chul Gyum;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.915-923
    • /
    • 2015
  • A method of estimating irrigation water need based on water balance and net water consumption concept is proposed, and applied to four watersheds in order to assess the regional and altitudinal characteristics of evapotranspiration and water need for upland crops in Jeju Island. Potential and actual evapotranspiration, and net water need were calculated during the period 1992 to 2013 using SWAT-K watershed model. The annual potential evapotranspiration decreased linearly with increasing elevation, while actual evapotranspiration showed increase with elevation to 400 m around and gradual decrease at higher elevation due to vegetation species, water availability, and cold limitation. Altitudinal pattern of net water need showed linear decrease with increasing elevation for three watersheds (Han-cheon, Cheonmi-cheon, and Oedo-cheon), and annual values of net water need for upland areas (below 200 m in elevation) were 559~680mm/yr. The comparison between actual pumping rate from wells and net water need for irrigation area showed that the amount of pumping water significantly increased during summer season (June to August), while net water need for crop cultivation relatively decreased during this period. To ensure these results, more water use data from pumping wells and additional watersheds should be investigated in the next study.

Acute Hydrofluoric Acid Exposure: Our Clinical Experience at Emergency Centers in Two University Teaching Hospitals (2개 대학병원 응급센터에 내원한 급성 불화수소산 노출 환자에 대한 임상적 경험)

  • Han, Kyu-Hong;Yang, Jung-Il;Jo, Seung-Yook;Cho, Yong-Chul;Ryu, Seung;Lee, Jin-Woong;Kim, Seung-Whan;Yoo, In-Sool;You, Yeon-Ho;Park, Jung-Soo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.7 no.2
    • /
    • pp.121-126
    • /
    • 2009
  • Purpose: We investigated the clinical characteristics and demographics of patients who suffered from hydrofluoric acid chemical injury and the mechanism of damage. Methods: We retrospectively reviewed the medical records of patients who were exposed to hydrofluoric acid from March 2004 to March 2009 and who were seen at the emergency centers in two university teaching hospitals. Results: Forty four patients out of 47 patients suffered from chemical burn, while the injuries of the remaining 3 could not be identified by the medical records. A total of 17 hydrofluoric acid chemical injury patients were enrolled during the study period, and their mean age was $29.6{\pm}7.0$. All the patients were accidentally injured by contact with the material and none of them inhaled or ingested the material. Only 6 patients wore appropriate protective equipments and 5 underwent the water irrigation for more than 10 minutes. The most common exposure area was the hand and forearm (70.5%). Less than 1% of all of the patients had their total body surface (TBS) exposed to hydrofluoric acid (mean=0.35%). The mean time interval from calcium gluconate administration to pain relief was $33.6{\pm}8.8$ hours. Conclusion: When exposed to hydrofluoric acid, it is important to wear protective equipment and undergo water irrigation for more than 10 minutes. Pain and skin damage were observed in all the patients. After treatment, we concluded that administration of calcium gluconate and pain killers was successful in relieving pain, and the prognosis was also positive for the admitted and followed up patients when less than 1% of the TBS was exposed.

  • PDF

Present State of Turf Management of School Playgrounds in Gyeonggi Province of Korea (경기도내 천연잔디 학교 운동장 잔디관리 현황)

  • Han, Sang Wook;Soh, Ho Seob;Won, Seon Yi;Ju, Young Cheoul
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.405-412
    • /
    • 2015
  • Forty schools having natural turf playgrounds were investigated by on-spot investigation and oral interviews with relevant school officials to find out basic information on turfgrass management practices of school playgrounds in Gyeonggi province. Average area of playground was $3,890m^2$ per school and $12m^2$ per student. Ninety five percent of turf playgrounds were managed by school staff and ninety percent of schools spent less than 5 million won per year for turf management. The difficulties in turfgrass management were considered as a major challenge for the schools, followed by turfgrass management cost. Among the management practices, school officials pointed out weed management as the most difficult work, followed by irrigation. The average number of fertilization and mowing was 2 and 6 times per year, respectively. About the half of playgrounds were irrigated only when there was wilting symptom. Zoysiagrass was the most popular choice for the school playgrounds and only three school playgrounds were established with pop-up irrigation system. Fourteen school playgrounds had good turf quality but the rest of school playgrounds had inadequate turf quality requiring minor or full renovation.

Chemical Characteristics of Groundwater in Carbonate Rock Areas of Korea

  • Kabir, Mohammad Lutful;Park, Youngyun;Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2014
  • This study was conducted to understand the chemical characteristics of groundwater in carbonate areas of Korea. In this study, data on pH, electric conductivity (EC), $Ca^{2+}$, $Mg^{2+}$, $Na^+$, $K^+$, $Cl^-$, $SO_4{^{2-}}$, and $HCO_3{^-}$ were collected from 97 wells which were installed in various carbonate rock regions of Korea. The pH values ranged from 5.7 to 9.9, and the average value was 7.3. The concentration range showed differences between the maximum value of $HCO_3{^-}$ and the medium to minimum values of $Ca^{2+}$, $Mg^{2+}$, $Na^+$, $Cl^-$, $SO_4{^{2-}}$, and $K^+$ in the study area. The average value of EC was $374{\mu}S/cm$, higher than in granite and gneiss areas, where the value is $176{\mu}S/cm$. Most of the groundwater was type $Ca-HCO_3$, and some was type $Mg-HCO_3$. The relationship between $Ca^{2+}$, $Cl^-$, and $HCO_3{^-}$, respectively, and EC showed relatively significant positive correlations compared to the other dissolved components. However, the determination coefficients for $Mg^{2+}$, $Na^+$, $SO_4{^{2-}}$, and $K^+$ were very low less than 0.2. These results indicate that the source of $Ca^{2+}$ and $Mg^{2+}$ is relatively simple (carbonate dissolution) compared to other sources. The sources of $Na^+$, $K^+$, $Cl^-$, $SO_4{^{2-}}$, and $HCO_3{^-}$ might be not only water-rock interactions, but also irrigation return flow, because many groundwater wells had been developed for irrigation purposes. Subsequently, the influence of agriculture on groundwater chemistry was evaluated using a cumulative plot of $SO_4{^{2-}}$. The threshold value of $SO_4{^{2-}}$ calculated from the cumulative frequency curve was 29.2 mg/L. Therefore, 12.4% of all the groundwater wells were affected by agricultural activity.

Use of Pellet or Cube-type Phenolic Foam as an Artificial Medium for Production of Tomato Plug Seedlings (토마토 플러그 묘 생산을 위한 펠릿 및 큐브형 phenolic foam 인공배지의 이용)

  • Kim, Hye Min;No, Kyoung Ok;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.414-423
    • /
    • 2016
  • Growers in plug seedling production think that root media in which rockwool is a component has given rise to several environmental problems. Therefore, the demand for new materials as a substitute for rockwool has been increased. This study examined the possibility of cultivation of tomato plug seedlings using a newly developed growing medium with phenolic foam. Plug seeds of tomato cultivar 'Madison' were sown in four pellet-type growing media: Grodan rockwool (GRW), UR rockwool (URW), phenolic foam LC (LC) or phenolic foam LC-lite (LC-lite). Then, the seedlings were transplanted to the four cube-type growing media 19 days after sowing. Seeds were germinated in a growth chamber ($25{\pm}2^{\circ}C$, 80% relative humidity, and dark) for 4 days and then the seedlings were grown with a nutrient solution supplied by an overhead irrigation system in a greenhouse. Plant height, number of leaves, leaf area, and fresh or dry weight of tomato seedlings were the greatest for the seedlings transplanted to URW cube media after being grown on LC-lite pellets. Root grade was the greatest for the seedlings transplanted on LC or LC-lite cube media after being grown on LC pellets. Chemical properties of all media tested for tomato growth were maintained within a stable range, while physical properties of URW showed high values in container capacity, air space, and total porosity. These results demonstrated that the phenolic foam media were effective for seedling growth and can substitute for rockwool as a root medium.

Effect of two different calcium hydroxide paste removal techniques on apical leakage: an electrochemical study (수산화칼슘 제제의 제거 방법이 치근단 누출에 미치는 영향에 대한 전기화학적 연구)

  • Park, Chan-Je;Jeon, Kyung-A;Kwon, Ho-Beom
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.3
    • /
    • pp.186-191
    • /
    • 2006
  • This study evaluated the effect of two different calcium hydroxide ($Ca(OH)_2$) paste removal techniques on the apical leakage of canals obturated with gutta percha cones and sealer after removing a $Ca(OH)_2$ dressing using an electrochemical method. Seventy extracted single-rooted teeth were instrumented on with Profile rotary files under NaOCl irrigation. Fifty-eight canals were filled with calcium hydroxide paste, which was then removed using one of the following two techniques. In group A, calcium hydroxide was removed using only NaOCl irrigation, and in group B, the canals were re-prepared with a Profile rotary files-one size larger than the previous instrument and were irrigated with NaOCl. In both groups, the root surfaces were coated twice with nail varnish from CEJ to an area 4 mm away from the apex after canal obturation. Apical leakage was measured using an electrochemical method for 24 days. All the specimens showed leakage that increased markedly in the first three days. There was no significant difference between the two groups (p>0.05). The effect of two calcium hydroxide paste removal techniques on the apical leakage was not different during a short period.