• 제목/요약/키워드: Irregular Geometry

Search Result 116, Processing Time 0.031 seconds

Earthquake Response Analysis considering Irregular Soil Layers (불규칙한 다층 물성을 가지는 지반의 지진 응답 해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.67-73
    • /
    • 2005
  • Precise analysis of soil-structure interaction requires a proper description of soil profile. However, such approach becomes generally nearly unpractical for soil exhibiting material discontinuity and complex geometry since meshes should match that material discontinuity line. To overcome these difficulties, a different numerical integration method is adopted in this paper, which enables to integrate easily over an element with material discontinuity without regenerating mesh fellowing the discontinuity line. As a result the mesh is highly structured, loading to very regular silliness matrix. The influence of the shape of soil profile on the response is examined and it is seen that the proposed soil-structure analysis method can be easily used on soil-structure interaction problems with complicated soil profile and produce reliable results regardless of material discontinuities.

ANALYSIS OF THE PERMEABILITY CHARACTERISTICS ALONG ROUGH-WALLED FRACTURES USING A HOMOGENIZATION METHOD

  • Chae, Byung-Gon;Choi, Jung-Hae;Ichikawa, Yasuaki;Seo, Yong-Seok
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • To compute a permeability coefficient along a rough fracture that takes into account the fracture geometry, this study performed detailed measurements of fracture roughness using a confocal laser scanning microscope, a quantitative analysis of roughness using a spectral analysis, and a homogenization analysis to calculate the permeability coefficient on the microand macro-scale. The homogenization analysis is a type of perturbation theory that characterizes the behavior of microscopically inhomogeneous material with a periodic boundary condition in the microstructure. Therefore, it is possible to analyze accurate permeability characteristics that are represented by the local effect of the facture geometry. The Cpermeability coefficients that are calculated using the homogenization analysis for each rough fracture model exhibit an irregular distribution and do not follow the relationship of the cubic law. This distribution suggests that the permeability characteristics strongly depend on the geometric conditions of the fractures, such as the roughness and the aperture variation. The homogenization analysis may allow us to produce more accurate results than are possible with the preexisting equations for calculating permeability.

Radiative Heat Transfer in Discretely Heated Irregular Geometry with an Absorbing, Emitting, and An-isotropically Scattering Medium Using Combined Monte-Carlo and Finite Volume Method (몬테카를로/유한체적결합법에 의한 국소 가열되는 복잡한 형상에서의 흡수, 방사, 비등방산란 매질에 대한 복사열전달 해석)

  • Byun, Do-Young;Lee, Chang-Jin;Chang, Seon-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.580-586
    • /
    • 2004
  • The ray effects of finite volume method (FVM) or discrete ordinate method (DOM) are known to show a non-physical oscillation in solution of radiative heat transfer on a boundary. This wiggling behavior is caused by the finite discretization of the continuous control angle. This article proposes a combined procedure of the Monte-Carlo and finite-volume method (CMCFVM) for solving radiative heat transfer in absorbing, emitting, and an-isotropically scattering medium with an isolated boundary heat source. To tackle the problem, which is especially pronounced in a medium with an isolated heat source, the CMCFVM is suggested here and successfully applied to a two-dimensional circular geometry.

Effect of Manufacturing Accuracy of Flexible Propeller on the Open Water Performance (유연 프로펠러의 제작 정도가 단독성능에 미치는 영향)

  • Lee, Kun-Hwa;Jang, Hyun-Gil;Lee, Chang-Sup;Nho, In-Sik;Lee, Sang-Gab;Hyun, Beom-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.349-354
    • /
    • 2013
  • The blades of flexible propellers are formed by overlaying and adhering many layers of thin glass-fiber fabric sheets, are compressed and dried in the rigid mold. The current manufacturing process can not avoid the rather irregular deformation of the blades composed of non-isotropic non-uniform fabric structures, and inevitably introduces the different shape-forming errors between blades. In this paper, several flexible model propellers are precisely measured with three-dimensional optical instrument and compared with the original design geometry. The model propellers with the as-measured geometry are evaluated with the lifting-surface-theory-based propeller analysis code. The open-water performance are presented and discussed. The importance of the manufacturing accuracy is addressed to be able to apply the flexible propellers for propulsion of marine vehicles.

Partially confined circular members subjected to axial compression: Analysis of concrete confined by steel ties

  • Eid, R.;Dancygier, A.N.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.737-765
    • /
    • 2005
  • This paper presents a theoretical model for the behavior of partially confined axi-symmetric reinforced concrete members subjected to axial load. The analysis uses the theories of elasticity and plasticity to cover the full range of the concrete behavior. Analysis of the elastic range of the problem involves boundary conditions that are defined along a relatively simple geometry. However, extending the analysis into the plastic range involves difficulties that arise from the irregular geometry of the boundary between the plastic zone and the elastic zone, a boundary which is also changing as the axial load increases. The solution is derived by replacing the discrete steel ties with an equivalent tube of thickness $t_{eq}$ and by analyzing the concrete cylinder, which is uniformly confined by the equivalent tube. The equivalency criterion initiates from a theoretical analysis of the problem in its elastic range where further finite element analysis shows that this criterion is valid also for the plastic range of the cylinder material. According to the proposed model, the efficiency of the lateral reinforcement can be evaluated by the equivalent thickness $t_{eq}$. Comparison with published test results of confined reinforced concrete stress-strain curves shows good agreement between the test and the analytical results.

Research on the use of BIM for smart construction of Complex Geometry buildings (비정형 건축물의 스마트건설을 위한 BIM 활용에 대한 연구 - 세종포천선 처인휴게소 시공사례)

  • Park, Yang-Heum;Nam, Dong-Hun;Kim, Byung-Soo;Park, Jungjoon;Kim, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.53-54
    • /
    • 2023
  • Because irregular shaped buildings are designed with various three-dimensional curves, the difficulty of design and construction is very high, and more construction drawings are needed to reduce construction errors. General 2D drawings may have limitations in conveying the information necessary for construction. By utilizing BIM, it is possible to three-dimensionally design parts that are not expressed on 2D drawings and additional structurall components required for the construction of the curved exterior finishing materials. This study examines the necessity of BIM at the construction stage, its performance through it, and how it can be linked to smart construction technology through construction BIM being applied to the new construction site of Sejong-Pocheon Line Cheoin Rest Area.

  • PDF

Development of 2.5D Electron Dose Calculation Algorithm (2.5D 전자선 선량계산 알고리즘 개발)

  • 조병철;고영은;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1999
  • In this paper, as a preliminary study for developing a full 3D electron dose calculation algorithm, We developed 2.5D electron dose calculation algorithm by extending 2D pencil-beam model to consider three dimensional geometry such as air-gap and obliquity appropriately. The dose calculation algorithm was implemented using the IDL5.2(Research Systems Inc., USA), For calculation of the Hogstrom's pencil-beam algorithm, the measured data of the central-axis depth-dose for 12 MeV(Siemens M6740) and the linear stopping power and the linear scattering power of water and air from ICRU report 35 was used. To evaluate the accuracy of the implemented program, we compared the calculated dose distribution with the film measurements in the three situations; the normal incident beam, the 45$^{\circ}$ oblique incident beam, and the beam incident on the pit-shaped phantom. As results, about 120 seconds had been required on the PC (Pentium III 450MHz) to calculate dose distribution of a single beam. It needs some optimizing methods to speed up the dose calculation. For the accuracy of dose calculation, in the case of the normal incident beam of the regular and irregular shaped field, at the rapid dose gradient region of penumbra, the errors were within $\pm$3 mm and the dose profiles were agreed within 5%. However, the discrepancy between the calculation and the measurement were about 10% for the oblique incident beam and the beam incident on the pit-shaped phantom. In conclusions, we expended 2D pencil-beam algorithm to take into account the three dimensional geometry of the patient. And also, as well as the dose calculation of irregular field, the irregular shaped body contour and the air-gap could be considered appropriately in the implemented program. In the near future, the more accurate algorithm will be implemented considering inhomogeneity correction using CT, and at that time, the program can be used as a tool for educational and research purpose. This study was supported by a grant (#HMP-98-G-1-016) of the HAN(Highly Advanced National) Project, Ministry of Health & Welfare, R.O.K.

  • PDF

Finite Element Analysis on the Effect of the Surface Roughness on the Tensile Properties of Pure Titanium (순 타이타늄 인장 물성에 미치는 표면 거칠기의 영향에 대한 유한요소해석)

  • Baek, S.M.;Moon, J.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.108-114
    • /
    • 2017
  • Titanium based implants are known to improve their osseointegration by controlling surface roughness from nanometers to micrometers. Implants continuously and/or repeatedly receive irregular loads in the human body, and require a deeper understanding of the tensile and fatigue properties that can determine the fracture characteristics of the materials. In this study, the plastic deformation behavior which depends on the surface geometry of the materials during tensile tests was analyzed using the finite element method. As a result, the tensile properties were greatly decreased with increasing the sharpness of the surface. On the other hand, the average roughness had no significant effect on tensile properties. This investigation shed a light on developing titanium implants with improved osseointegration by surface treatments.

A Study of n Multigrid Finite-Volume Method for Radiation (다중격자 유한체적법에 의한 복사열전달 해석)

  • Kim, Man-Young;Do, Young-Byun;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.135-140
    • /
    • 2003
  • The convergence of finite volume method (FVM) or discrete ordinate method (DOM) is known to degrade for optical thickness greater than unity and large scattering albedo. The present article presents a convergence acceleration procedure for the FVM based on a full approximation storage (FAS) multigrid method. Among a variety of multigrid cycles, the V-cycle is used and the full multigrid algorithm (FMG) is applied to an analysis of radiation in irregular two-dimensional geometry. Solution convergence is discussed for the several cases of various optical thickness and scattering albedo. At small scattering albedo and optical thickness, there is no advantage to using the multigrid method for calculation CPU time. For large scattering albedo greater than 0.5 and optical thickness greater than unity, however, the multigrid method improves the convergence and the solution is rapidly obtained.

A Study on the Design of Fatigue Strength using Fractal Character of Surface Micro-crack (표면미소균열의 프랙탈 특성을 이용한 피로강도설계에 관한 연구)

  • Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.143-151
    • /
    • 1999
  • The shape of surface micro-crack is very irregular due to nonhomogeneous microstructure but is very important in respect to qualitative estimation of fatigue life. Fractal geomety can quantify the shape of surface mciro-crack. Fractal dimension is measured for surface micro-cracks with coast line and box counting method and estimates cycle ration in Al 2024-T3. The average fractal dimension $D_{favg}$ of surface micro-cracks has 3-parameter weibull distribution and location parameter is nearly constant but shape parameter decreases as cycle ration increases. The fractal dimension by coast line method is measured for individual surface micro-crack but the fractal dimension by box countin method is measured for all the surface micro-cracks under sampling area. Therefore, This paper shows fractal dimension $D_{fb}$ can predict cycle ratio $N/N_f$ more convenient than fractal dimension $D_{favg}$.

  • PDF