• Title/Summary/Keyword: Irradiation production

Search Result 503, Processing Time 0.024 seconds

Arthrospira platensis Mutants Containing High Lipid Content by Electron Beam Irradiation and Analysis of Its Fatty Acid Composition (전자빔 조사에 의해 지질 함량이 증대된 Arthrospira platensis 변이주 분리 및 지방산 분석)

  • Choi, Soo-Jeong;Kim, Young-Hwa;Kim, Andre;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.628-632
    • /
    • 2013
  • Arthrospira platensis (A. platensis) is an economically important microalgae because it has carbohydrates, lipids, proteins and a number of phytochemicals. It is also a valuable source used in the production of biodiesel and functional foods. In this study, A. platensis was exposed to electron beam irradation (240 kGy) and induced random mutagenesis for strain improvement. Several mutants were obtained, and the resulting mutant was designated as EB29. The growth rate and chlorophyll content of EB29 was similar to those of wild type. However, the lipid content of EB29 was increased seven-fold compared to that of wild type when comparing the nile red fluorescent intensity. Semi-quantitative analysis of EB29 using the calibration plot of standard lipid, triolein, represented $78.6{\mu}g/mL$, which increased 2 times compared to wild type ($41.4{\mu}g/mL$). When analyzing the fatty acid profile of EB29, polyunsaturated fatty acids (PUFAs), such as gamma-linolenic acid (GLA) in EB29 increased about six-fold. Moreover, fatty acids affecting the quality of biodiesel increased compared to that of wild type. Thus, electron beam could be used for the strain improvement of microalgae in order to accumulate PUFAs and alteration of fatty acid profile for biodiesel.

Anti-cancer Effects and Molecular Mechanisms of Withaferin A (Withaferin A의 다양한 항암 효과 및 분자생화학적 기전)

  • Woo, Seon Min;Min, Kyoung-Jin;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.462-469
    • /
    • 2013
  • Withaferin A is a steroidal lactone purified from the Indian medicinal plant Withania somnifera. It exhibits a wide variety of activities, including anti-tumor, anti-inflammation, and immunomodulation properties. In this review, we focused on the anti-cancer effects of withaferin A. Withaferin A inhibits cell proliferation, metastasis, invasion, and angiogenesis in cancer cells. Furthermore, it sensitized irradiation, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-, and doxorubicin-mediated apoptosis. The results showed that multiple mechanisms were involved in withaferin A-mediated anti-cancer effects. First, withaferin A increased intracellular reactive oxygen species (ROS) production and induced ER stress- and mitochondria-mediated apoptosis. Second, withaferin A inhibited the signaling pathways (Jak/STAT, Akt, Notch, and c-Met), which are important in cell survival, proliferation, and metastasis. Third, it induced apoptosis and inhibited cancer cell migration through the up-regulation of prostate apoptosis protein-4 (Par-4). Finally, withaferin A up-regulated pro-apoptotic protein expression levels through the inhibition of proteasome activity. Our findings suggested that withaferin A is a potential, potent therapeutic agent.

Electro-electrodialysis Using the Radiation-treated Cation Exchange Membrane by Accelerated Electron Radiation to Concentrate HI from HIx Solution (전자선 가속기에 의해 방사선 처리한 양이온교환막을 이용한 전해-전기투석에 의한 HIx용액으로부터 HI의 농축)

  • Hwang, Gab-Jin;Kim, Jeong-Keun;Lee, Sang-Ho;Choi, Ho-Sang
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.338-344
    • /
    • 2007
  • Electro-electrodialysis of hydriodic acid with HI molality of ca. 9.5 $mol/kg-H_2O$ was examined in the presence of iodine using a commercial cation exchange membrane, CMB, as a separator. For the increase of the selectivity of proton permeation, the membrane was radiation-treated by accelerated electron radiation. The membrane properties (area resistance, ion exchange capacity, water content) of the radiation-treated membranes were measured. The area resistance in 2 $mol/dm^3$ KCl solution, ion exchange capacity and water content of the radiation-treated membranes at each dose rate dad almost the same value as that of the non-treated membrane (original of CMB membrane). Electro-electrodialysis of hydriodic acid with HI molality of ca. 9.5 $mol/kg-H_2O$ was examined at $75^{\circ}C$ with 9.6 $A/dm^2$. The radiation-treated cation exchange membrane by accelerated electron radiation had higher selectivity of the proton permeation by cross-linking structure of polymer than that of the non-treated membrane.

Blue Light Photosensitization in Mitochondrial Membrane of Plant Cells (식물세포 미토콘드리아막에서 일어나는 청색광 Photosensitization)

  • Kim, Kyung-Hyun;Kim, Jong-Pyung;Jung, Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.94-100
    • /
    • 1987
  • Plant mitochondria, irradiated with blue-colored $sunlight(350{\sim}500nm)$ under aerobic and anaerobic conditions, were assayed as to the electron transfer activity of respiratory enzyme system, and compared with those irradiated with orange-colored light(white sunlight minus blue-colored light). The respiratory activity of mitochondria was most seriousely inhibited by illumination with blue-colored light under aerobic condition. Deaeration of mitochondrial suspension resulted in substantial decrease of the photoinhibition by blue-colored light. Meanwhile, orange-colored light demonstrated much less effectiveness-almost ineffectiveness-in causing the inhibition of mitochondrial respiration system. The results of enzymatic assay revealed a strong possibility that FMN in NDH and heme group at least in cytochrome c oxidase, but not FAD in SDH, are the photodynamic sensitizers in mitochondrial inner membrane. Also worthwhile to note is the significant difference from the others of SDH in its photoinhibitory response to the light quality of visible light; that the inhibition of SDH by irradiation was not affected by atmospheric condition and that orange-colored light gave rise to considerable extents of inhibition to the enzyme. This observation was tentatively interpreted in terms of photosensitized reaction not involving molecular oxygen possibly catalyzed by Fe-S centers in the enzyme. The superoxide production and the membrane peroxidation of mitochondria under various treatments also indicated that there was blue-light photodynamic reaction in mitochondria involving active oxygens.

  • PDF

Properties of liquid crystal alignment layers exposued to ion-beam irradiation enemies (이온빔 에너지에 따른 액정배향막의 전기광학적 특성연구)

  • Oh, Byeong-Yun;Lee, Kang-Min;Park, Hong-Gyu;Kim, Byoung-Yong;Kang, Dong-Hun;Han, Jin-Woo;Kim, Young-Hwan;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.430-430
    • /
    • 2007
  • In general, polyimides (PIs) are used in liquid crystal displays (LCDs) as alignment layer of liquid crystals (LCs). Up to date, the rubbing alignment technique has been widely used to align liquid crystals on the PI surface, which is suitable for mass-production of LCDs because of its simple process and high productivity. However, this method has some disadvantages. Rubbed PI surfaces include the debris left by the cloth and the generation of electrostatic charges during rubbing process. Therefore, rubbing-free techniques for LC alignment are strongly required in LCD technology. In this experiment, PI was uniformly coated on indium-tin-oxide electrode substrates to form LC alignment layers using a spin-coating method and the PI layers were subsequently imidized at 433 K for 1 h. The thickness of the PI layer was set at 50 nm. The LC alignment layer surfaces were exposed to an $Ar^+$ ion-beam under various ion-beam energies. The antiparallel cells and twisted-nematic (TN) cells for the measurement of pretile angle and electro-optical characteristics were fabricated with the cell gap of 60 and $5\;{\mu}m$, respectively. The LC cells were filled with nematic LC (NLC, MJ001929, Merck) and were assembled. The NLC alignment capability on ion-beam-treated PI was observed using photomicroscope and the pretilt angle of the NLC was measured by the crystal-rotation method at room temperature. Voltage-transmittance (V-T) and response time characteristics of the ion-beam irradiated TN cell were measured by a LCD evaluation system.

  • PDF

Fractionated Trapa japonica Extracts Inhibit ROS-induced Skin Inflammation in HaCaT keratinocytes (각질형성세포에서 ROS로 유도된 염증반응에 대한 능실 추출물 및 그 분획물의 항염 효과)

  • Nam, Jin-Ju;Kim, Youn Joon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Ultraviolet B (UVB) irradiation induces both production of reactive oxygen species (ROS) and glucocorticoids (GCs)-mediated stress responses such as an increase of $11{\beta}$-hydroxysteroid dehydrogenase type 1 ($11{\beta}$-HSD1) activity in skin. In addition, ROS-induced inflammatory mediators and proinflammatory cytokines trigger skin inflammation. In this study, as $11{\beta}$-HSD1 inhibitor recovered a decrease of catalase expression, we investigated whether Trapa japonica (TJ) extract and its fractions could inhibit $11{\beta}$-HSD1/ROS-induced skin inflammation in HaCaT keratinocytes. TJ extract and its fractions inhibited expressions of $11{\beta}$-HSD1 as well as the increase of ROS in UVB-exposed HaCaT keratinocytes. Moreover, proinflammatory cytokines such as interleukin (IL)- ${\alpha}$, - ${\beta}$ and tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) as inflammatory mediators were also inhibited in both mRNA and protein levels. Finally, prostaglandin $E_2$ ($PGE_2$) produced by COX-2 was inhibited effectively by TJ extract and its fractions. Taken together, these results suggest that TJ extract could be a potential anti-inflammatory ingredient to inhibit UVB-induced inflammation in skin.

Glycation Inhibitory and Antioxidative Activities of Ergothioneine (에르고티오네인의 당화 억제 및 항산화 활성에 관한 연구)

  • Bae, Jun-Tae;Lee, Chung-Hee;Lee, Geun-Soo;Kim, Jin-Hwa;Hong, Jin-Tae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.151-159
    • /
    • 2019
  • Ergothioneine has been known as an excellent antioxidant and a cellular protector against oxidative damage in vivo. In the present study, ergothioneine was demonstrated to possess antioxidant and anti-glycation activities. The radical scavenging activity of ergothioneine enhanced the viability of human dermal fibroblasts (HDFs) exposed to ultraviolet (UV) light. The UVA irradiation increased the proportion of senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) positive cells in comparison with the normal control group. The treatment of UVA-irradiated HDFs with ergothioneine decreased the level of SA-b-gal (by approximately 45% at an ergothioneine concentration of $400{\mu}M$) compared with the UVA-irradiated HDFs. We also found that ergothioneine inhibited production of glyceraldehyde-derived advanced glycation endproducts (AGEs) in a concentration-dependent manner. The ergothioneine educed carboxymethyl-lysine (CML) expression in comparison to the glyoxal treatment. In addition, in the Western blot analysis, treatment of glyoxal-stimulated HDFs with ergothioneine resulted in a dose-dependent decrease in the expression level of the receptor for AGE (RAGE). These results suggest that ergothioneine may have potent anti-aging effects and could be used as a cosmetic material against cellular accumulation of AGEs.

Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex (폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성)

  • Kim, Dong-Yeong;Seo, Jun-Hee;Lee, Byungjin;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • This study demonstrates a new method for the synthesis of organic-inorganic hybrid particles composed of an inorganic silica shell and organic core particles. The organic core particles are prepared with a uniform size using droplet-based microfluidic technology. In the process of preparing the organic core particles, uniform droplets are generated by independently controlling the flow rates of the dispersed phase containing photocurable resins and the continuous phase. After the generation of droplets in a microfluidic device, the droplets are photo-polymerized as particles by ultraviolet irradiation at the ends of microfluidic channels. The core particle is coated with a nano complex composed of polyallylamine hydrochloride (PAH) and phosphate ion (Pi) through strong non-covalent interactions such as hydrogen bonding and electrostatic interaction under optimized pH conditions. The polyamine nano complex rapidly induces the condensation reaction of silicic acid through the arranged amine groups of the main chain of PAH. Therefore, this method enabled the preparation of organic-inorganic hybrid particles coated with inorganic silica nanoparticles on the organic core. Finally, we demonstrated the synthesis of organic-inorganic hybrid particles in a short time under ambient and environmentally friendly conditions, and this is applicable to the production of organic-inorganic hybrid particles having various sizes and shapes.

Manufacturing and testing of flat-type divertor mockup with advanced materials

  • Nanyu Mou;Xiyang Zhang;Qianqian Lin;Xianke Yang;Le Han;Lei Cao;Damao Yao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2139-2146
    • /
    • 2023
  • During reactor operation, the divertor must withstand unprecedented simultaneous high heat fluxes and high-energy neutron irradiation. The extremely severe service environment of the divertor imposes a huge challenge to the bonding quality of divertor joints, i.e., the joints must withstand thermal, mechanical and neutron loads, as well as cyclic mode of operation. In this paper, potassium-doped tungsten (KW) is selected as the plasma facing material (PFM), oxygen-free copper (OFC) as the interlayer, oxide dispersion strengthened copper (ODS-Cu) alloy as the heat sink material, and reduced activation ferritic/martensitic (RAFM) steel as the structural material. In this study, a vacuum brazing technology is proposed and optimized to bond Cu and ODS-Cu alloy with the silver-free brazing material CuSnTi. The most appropriate brazing parameters are a brazing temperature of 940 ℃ and a holding time of 15 min. High-quality bonding interfaces have been successfully obtained by vacuum brazing technology, and the average shear strength of the as-obtained KW/Cu and ODS-Cu alloy joints is ~268 MPa. And a fabrication route for manufacturing the flat-type divertor target based on brazing technology is set. For evaluating the reliability of the fabrication technologies under the reactor relevant condition, the high heat flux test at 20 MW/m2 for the as-manufactured flat-type KW/Cu/ODS-Cu/RAFM mockup is carried out by using the Electron-beam Material testing Scenario (EMS-60) with water cooling. This paper reports the improved vacuum brazing technology to connect Cu to ODS-Cu alloy and summarizes the production route, high heat flux (HHF) test, the pre and post non-destructive examination, and the surface results of the flat-type KW/Cu/ODS-Cu/RAFM mockup after the HHF test. The test results demonstrate that the mockup manufactured according to the fabrication route still have structural and interfacial integrity under cyclic high heat loads.

Enhanced Crystallinity of Piezoelectric Polymer via Flash Lamp Annealing (플래시광 열처리를 통한 압전 고분자의 결정성 향상 연구)

  • Donghun Lee;Seongmin Jeong;Hak Su Jang;Dongju Ha;Dong Yeol Hyeon;Yu Mi Woo;Changyeon Baek;Min-Ku Lee;Gyoung-Ja Lee;Jung Hwan Park;Kwi-Il Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.427-432
    • /
    • 2024
  • The polymer crystallization process, promoting the formation of ferroelectric β-phase, is essential for developing polyvinylidene fluoride (PVDF)-based high-performance piezoelectric energy harvesters. However, traditional high-temperature annealing is unsuitable for the manufacture of flexible piezoelectric devices due to the thermal damage to plastic components that occurs during the long processing times. In this study, we investigated the feasibility of introducing a flash lamp annealing that can rapidly induce the β-phase in the PVDF layer while avoiding device damage through selective heating. The flash light-irradiated PVDF films achieved a maximum β-phase content of 76.52% under an applied voltage of 300 V and an on-time of 1.5 ms, a higher fraction than that obtained through thermal annealing. The PVDF-based piezoelectric energy harvester with the optimized irradiation condition generates a stable output voltage of 0.23 V and a current of 102 nA under repeated bendings. These results demonstrate that flash lamp annealing can be an effective process for realizing the mass production of PVDF-based flexible electronics.