• 제목/요약/키워드: Irradiation Design

Search Result 295, Processing Time 0.031 seconds

Analysis of the Irradiation Distance of Dipped-beam Headlamps Using Computer Simulation (컴퓨터 시뮬레이션을 이용한 변환빔 전조등 조사거리에 관한 연구)

  • Cho, Hyun Yul;Lee, Ho Sang;Yong, Boojoong;Woo, Hyun Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.159-165
    • /
    • 2013
  • One of the leading causes of night time automobile accidents is the darkness of surroundings. Headlamps play a critical role in casting light and providing drivers with visibility. Headlamp design and new technology have been developed recently as research has been actively carried out to increase headlamp recognition. This study statistically analyzes irradiation distance using computer simulation by categorizing headlamps applied in domestic automobiles in the last decade by year, light source, form, vehicle type, and height of installation. After analyzing results of irradiation distance, it appears irradiation distance has been increased by approximately 10m in the last decade. This increase in irradiation distance is predicted to decrease night time accidents by allowing more time to recognize potential causes of accidents.

Gamma irradiation and subsequent storage reduce patulin content in apple juice

  • Hyejeong Yun;Dong-Ho Kim;Jung-Ok Kim;Gee-Dong Lee;Joong-Ho Kwon
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.499-505
    • /
    • 2024
  • Patulin has been reported as a risk factor in various foods, especially apple juice. This study monitored residual patulin and polyphenolic content in apple juice during post-irradiation storage conditions. Response surface methodology (RSM) was applied to monitor the changes in dependent variables (Yn, patulin, and polyphenolics) as affected by independent variables, such as storage temperature (Xi, -20℃ to 20℃), irradiation dose (Xii, 0-2 kGy), and storage period (Xiii, 0-20 days), which were based on a central composite design. The predicted peak point resulted in the lowest residual patulin content of 58.42 ppb with the corresponding independent parameter conditions, such as 18.19℃ of storage temperature, 1.24 kGy of irradiation dose, and 13.42 days of storage period. The residual patulin content of 58.42 ppb is the minimum desirable level, representing a 91% reduction compared to the non-irradiated control (675.00 ppb). A maximum polyphenolics content (11.98 mg/g) was obtained under the predicted maximum conditions of 14.40℃, 0.78 kGy, and 3.4 days. The most influential parameter in reducing residual patulin content while maintaining polyphenolic content in apple juice was irradiation dose (p<0.01), which showed potential to be applied in controlling the patulin levels in apple juice.

Comparative analysis of the global solar horizontal irradiation in typical meteorological data (표준기상데이터의 일사량 데이터 비교 분석)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.102-109
    • /
    • 2009
  • The research on meteorological data in Korea has been carried out but without much consistency and has been limited to some areas only. Of relatively more importance has been the area in the utilization of the solar energy, however, the measurement of the global solar horizontal irradiation has been quite limited. In the current study, the actually measured value of the global solar horizontal irradiation from the meteorological data and the theoretically calculated value of the global solar horizontal irradiation from the cloud amount will be analyzed comparatively. The method of analysis will employ the standard meteorological data drafted by the Korean Solar Energy Society, the standard meteorological data from the presently used simulation program and the corresponding results have been compared with the calculated value of the global solar horizontal irradiation from the cloud amount. The results of comparing the values obtained from MBE(Mean Bias Error), RMSE(Root Mean Squares for Error), t-Statistic methods and those from each of the standard meteorological data show that the actually measured value of the meteorological data which have been converted into standard meteorological data with the help of the ISO TRY method give the monthly average value of the global solar horizontal irradiation. These values compared with the monthly average value from the IWEC from the Department of Energy of the USA show that the value of the global solar horizontal irradiation in the USA is quite similar. In the case of the values obtained from calculation from the cloud amount, the weather data provided by TRNSYS, except only slight difference, which means that the actually measured values of the global solar horizontal irradiation are significant. This goes to show that in the case of Korea, the value of the global solar horizontal irradiation provided by the Korea Meteorological Administration is will be deemed correct.

Design of Vessel Assembly for Fuel Irradiation Test in Reactor (원자로 내 핵연료조사시험용 압력용기조립체 설계)

  • Park, Kook-Nam;Lee, Jong-Min;Chi, Dae-Young;Park, Su-Ki;Lee, Chung-Young;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.383-387
    • /
    • 2004
  • The Fuel Test Loop (FTL) consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). The test condition in IPS such as pressure, temperature and quality of the main cooling water, can be controlled by the OPS. The FTL has been developed to be able to irradiate three pins to the core irradiation hole (IR1 hole) by considering for its utility and user's irradiation requirement. The IPS vessel assembly (IVA) consists of IPS head, outer pressure vessel, inner pressure vessel, inner assembly and test fuel carrier. The IVA is approximately 5.6 m long and fits within a 74 mm in diameter envelope over the full height of the chimney. Above the top of the chimney, the head of the IPS is enlarged to allow the closure flanges and pipe work connections. IVA was designed to test the CANDU and PWR nuclear fuel pin together. Specially, wished to minimize interference by nuclear fuel change in design and synthesize these items and shape design for IVA.

  • PDF

Total Body Irradiation Technique : Basic Data Measurements and In Vivo Dosimetry (방사선 전신 조사 : 기본 자료 측정 및 생체내에서 선량 측정)

  • Choi Dong-Rak;Choi Ihl Bohng;Kang Ki Mun;Shinn Kyung Sub;Kim Choon Choo
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.219-223
    • /
    • 1994
  • This paper describes the basic data measurements for total body irradiation with 6 Mv photon beam including compensators design. The technique uses bilateral opposing fields with tissue compensators for the head, neck, lungs, and legs from the hip to toes. In vivo dosimetry was carried out for determining absorbed dose at various regions in 7 patients using diode detectors(MULTIDOSE,k Model 9310, MULTIDATA Co., USA). As a results, the dose uniformity of${\pm}3.5{\%}$(generally, within${\pm}10{\%}$can be achieved with out total body irradiation technique.

  • PDF

Comparison of Effects of Ultraviolet and $^{60}$ Co Gamma Ray Irradiation on Nylon 6 Mono-filaments

  • Ohtsuka, Mika;Suzuki, Yoshino;Sakai, Tetsuya;Netravali, Anil N.
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • The effect of UV and $^60{Co}$ gamma radiations on the physical and mechanical properties of nylon 6 mono-filaments with different draw ratios has been studied. Specimens were exposed to either up to 25 Mrad of gamma or up to 168 hrs of intense UV irradiation. The results show that nylon mono-filaments exposed to gamma rays, with much higher quantum energy than UV, undergo a larger extent of molecular chain scission. Higher irradiation dose also results in the production of insoluble, macroscopic three-dimensional cross-linked network structure. The amorphous regions with a lower density of cohesive energy (lower molecular orientation) show a higher extent of cross linking reaction whereas amorphous regions with a higher density of cohesive energy (higher orientation) show higher extent of chain scission reaction, irrespective of UV ray or gamma ray irradiation.

The Cold Function Test of a Main Cooling Water System for a Nuclear Fuel Test Loop Installed in HANARO (하나로 핵연료 시험장치의 주냉각수 계통 상온기능시험)

  • Park, Young-Chul;Lee, Young-Sub;Chi, Dai-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2505-2510
    • /
    • 2008
  • A nuclear fuel test loop (after below, FTL) is installed in IR1 of an irradiation hole in HANARO for testing neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor or a heavy water power reactor. When HANARO is normally operated, the fuel loaded in the irradiation hole has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain an operation condition of the test fuel, a main cooling water system (MCWS) is installed in the OPS of the FTL. This paper describes the cold function test results of the MCWS. It was confirmed through the test results that the system met the design requirements under a cold operation condition.

  • PDF

Investigation on the effect of eccentricity for fuel disc irradiation tests

  • Scolaro, A.;Van Uffelen, P.;Fiorina, C.;Schubert, A.;Clifford, I.;Pautz, A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1602-1611
    • /
    • 2021
  • A varying degree of eccentricity always exists in the initial configuration of a nuclear fuel rod. Its impact on traditional LWR fuel is limited as the radial gap closes relatively early during irradiation. However, the effect of misalignment is expected to be more relevant in rods with highly conductive fuels, large initial gaps and low conductivity filling gases. In this paper, we study similar characteristics in the experimental setup of two fuel disc irradiation campaigns carried out in the OECD Halden Boiling Water Reactor. Using the multi-dimensional fuel performance code OFFBEAT, we combine 2-D axisymmetric and 3-D simulations to investigate the effect of eccentricity on the fuel temperature distribution. At the same time, we illustrate how the advent of modern tools with multi-dimensional capabilities might further improve the design and interpretation of in-pile separate-effect tests and we outline the potential of such an analysis for upcoming experiments.

POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

  • Ryu, H.J.;Park, J.M.;Jeong, Y.J.;Lee, K.H.;Lee, Y.S.;Kim, C.K.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.847-858
    • /
    • 2013
  • Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea) in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4-5 $g-U/cm^3$ were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr), additional protective coatings (silicide or nitride), and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

A Microstructural Design and Modeling of Neutron-Irradiated Materials (중성자 조사재의 미세구조 설계와 모델링)

  • Chang, Kunok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.347-351
    • /
    • 2020
  • A material changes its physical and chemical properties through the interaction with radiation and also the neutrons, which is electronically neutral so that the penetration depth is relatively deeper than that of other radioactive way including alpha or beta ray. Therefore, the radiation damage by neutron irradiation has been intensively investigated for a long time with respect to the safety of nuclear power plants. The damage induced by neutron irradiation begins with the creation of point defects in atomic scale in the unit of picoseconds, and their progress pattern can be characterized by microstructural defects, such as dislocation loops and voids. Their morphological characteristics affect the properties of neutron-irradiated materials, therefore, it is very important to predict the microstructure at a given neutron irradiation condition. This paper briefly reviews the evolution of radiation damage induced by neutron irradiation and introduces a phase-field model that can be widely used in predicting the microstructure evolution of irradiated materials.