• 제목/요약/키워드: Irradiation Defects

검색결과 140건 처리시간 0.027초

저밀도 폴리에틸렌의 도전율에 미치는 전자선 조사의 영향 (The Influence of Electron Beam Irradiation due to Conductivity in the Low Density Polyethylene)

  • 조경순;김이두;신현택;이수원;이종필;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 1998
  • In this paper, the physical and conductivity properties due to the electron beam irradiation for low density polyethylene using insulating materials of the distribution cable and ultra-high voltage cable are studied. The specimens of the low density polyethylene of thickness 100[$\mu\textrm{m}$] irradiated as each 1 [Mrad], 2[Mrad], 4[Mrad], 8[Mrad], 16[Mrad] and virgin are used in this experiment. In order to measure the conductivity properties, the micro electrometer is used, the range of temperature and app1ying voltage are 20 to 120[$^{\circ}C$], from 100 to 1000[V] respectively So. as a result of the conductivity properties, it is confirmed that the conductivity is increased nearly to 50[$^{\circ}C$], and is not changed until the crystalline melting point from the temperature over 60[$^{\circ}C$] because of the defects of morphology and the formation of many trap centers by means of electron beam irradiation

  • PDF

저압케이블용 절연재료의 OIT 특성분석 (Characterization of Insulation Materials of Oxide Induced Time for Low Voltage Cables with $\tau$-Ray Irradiation)

  • 박정기;이우선;한재홍;서용진;김남오;김형곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 반도체재료
    • /
    • pp.57-60
    • /
    • 2001
  • This study describes the effect of $\tau$ -ray irradiation on the properties of insulation materials for low voltage cables in a nuclear power plant. The radiation effects were characterized by measuring OIT, FTIR, electrical properties of the irradiated specimens. As a result, they showed the decrease of OIT and the increase of chemical structural defects with the increase of $\tau$ -ray amount

  • PDF

High Dose $^{60}Co\;{\gamma}$-Ray Irradiation of W/GaN Schottky Diodes

  • Kim, Jihyun;Ren, F.;Schoenfeld, D.;Pearton, S.J.;Baca, A.G.;Briggs, R.D.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권2호
    • /
    • pp.124-127
    • /
    • 2004
  • W/n-GaN Schottky diodes were irradiated with $^{60}Co\;{\gamma}-rays$ to doses up to 315Mrad. The barrier height obtained from current-voltage (I-V) measurements showed minimal change from its estimated initial value of ${\sim}0.4eV$ over this dose range, though both forward and reverse I-V characteristics show evidence of defect center introduction at doses as low as 150 Mrad. Post irradiation annealing at $500^{\circ}C$ increased the reverse leakage current, suggesting migration and complexing of defects. The W/GaN interface is stable to high dose of ${\gamma}-rays$, but Au/Ti overlayers employed for reducing contact sheet resistance suffer from adhesion problems at the highest doses.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

Electrical characteristics and deep-level transient spectroscopy of a fast-neutron-irradiated 4H-SiC Schottky barrier diode

  • Junesic Park;Byung-Gun Park;Hani Baek;Gwang-Min Sun
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.201-208
    • /
    • 2023
  • The dependence of the electrical characteristics on the fast neutron fluence of an epitaxial 4H-SiC Schottky barrier diode (SBD) was investigated. The 30 MeV cyclotron was used for fast neutron irradiation. The neutron fluences evaluated through Monte Carlo simulation were in the 2.7 × 1011 to 1.45 × 1013 neutrons/cm2 range. Current-voltage and capacitance-voltage measurements were performed to characterize the samples by extracting the parameters of the irradiated SBDs. Neutron-induced defects in the epitaxial layer were identified and quantified using a deep-level transient spectroscopy measurement system developed at the Korea Atomic Energy Research Institute. As the neutron fluence increased from 2.7 × 1011 to 1.45 × 1013 neutrons/cm2, the concentration of the Z1/2 defects increased by approximately 20 times. The maximum defect concentration was estimated as 1.5 × 1014 cm-3 at a neutron fluence of 1.45 × 1013 neutrons/cm2.

양전자 소멸 측정법으로 양성자 조사에너지 변화에 대한 n, p형 실리콘 구조 특성 (Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method)

  • 이종용
    • 한국진공학회지
    • /
    • 제22권6호
    • /
    • pp.341-347
    • /
    • 2013
  • 동시 계수 도플러 넓어짐 양전자 소멸 분광법으로 n형과 p형 실리콘 시료에 40.0, 3.98 MeV 에너지를 가진 $0.0{\sim}20.0{\times}10^{13}protons/cm^2$ 양성자 빔 조사에 의한 결함을 측정하여 시료 특성을 조사하였다. 양전자와 전자의 쌍소멸로 발생하는 감마선 스펙트럼의 전자 밀도 에너지에 의한 수리적 해석 방법인 S-변수를 사용하여, 시료의 구조 변화를 측정하였다. 본 연구에서 측정된 S-변수는 시료에 조사된 양성자 조사량의 변화에 따라 결함이 증가하였으며, 그리고 40 MeV 양성자 빔의 세기는 n형 실리콘에서 빔의 조사량 $20.0{\times}10^{13}protons/cm^2$에서 3.98 MeV 보다 결함의 영향이 더 큰 것으로 나타났다. 그 결과 조사에 너지와 조사량의 상관관계를 비교 분석하였다. SRIM 시뮬레이션의 결과는, 양성자의 Bragg 피크 특성 때문에 시료 전체에 대한 결함으로 나타나기 보다는 양성자가 시료의 특정 깊이에 주로 결함을 형성하는 것을 보여 준다.

Enhancement of a mechanical property of metal sheaths (Cu and Nb) of MgB2 superconducting wires by E-beam irradiation

  • Kim, C.J.;Lee, T.R.;Jun, B.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권3호
    • /
    • pp.30-34
    • /
    • 2022
  • Effects of electron beam (EB) irradiation on the mechanical strength of Cu (conducting sheath) and Nb (diffusion barrier) of Cu/Nb/MgB2 superconducting was investigated. Wire- and tape-type Cu/Nb/MgB2 samples were irradiated at E-beam energy of 2.5 MeV and 5 mA and a maximum E-beam dose was 5×1017 e/m2. The hardness value of Cu and Nb region was measured by the Vickers micro-hardness method. In the case of the wire sample, the hardness of Cu and Nb increased proportionally as the dose was increased up to 5×1017 e/m2, whereas in the case of the tape sample, the hardness increased up to a dose of 0.5×1017 e/m2, and decreased slightly 5×1017 e/m2. The hardness increase of Cu and Nb is believed to be due to the decrease of the deformability of Cu and Nb due to the defects formed inside the materials by E-beam irradiation.

Evaluation of radiation resistance of an austenitic stainless steel with nanosized carbide precipitates using heavy ion irradiation at 200 dpa

  • Ji Ho Shin ;Byeong Seo Kong;Chaewon Jeong;Hyun Joon Eom;Changheui Jang;Lin Shao
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.555-565
    • /
    • 2023
  • Despite many advantages as structural materials, austenitic stainless steels (SSs) have been avoided in many next generation nuclear systems due to poor void swelling resistance. In this paper, we report the results of heavy ion irradiation to the recently developed advanced radiation resistant austenitic SS (ARES-6P) with nanosized NbC precipitates. Heavy ion irradiation was performed at high temperatures (500 ℃ and 575 ℃) to the damage level of ~200 displacement per atom (dpa). The measured void swelling of ARES-6P was 2-3%, which was considerably less compared to commercial 316 SS and comparable to ferritic martensitic steels. In addition, increment of hardness measured by nano-indentation was much smaller for ARES-6P compared to 316 SS. Though some nanosized NbC precipitates were dissociated under relatively high dose rate (~5.0 × 10-4 dpa/s), sufficient number of NbC precipitates remained to act as sink sites for the point defects, resulting in such superior radiation resistance.

Neutron irradiation impact on structural and electrical properties of polycrystalline Al2O3

  • Sunil Kumar;Sejal Shah;S. Vala;M. Abhangi;A. Chakraborty
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.402-409
    • /
    • 2024
  • High energy neutron irradiations impact on structural and electrical properties of alumina are studied with particular emphasis on real time in-situ radiation induced conductivity measurement in low flux region. Polycrystalline Al2O3 samples are subjected to high energy neutrons produced from D-T neutron generator and Am-Be neutron source. 14 MeV neutrons from D-T generator are chosen to study the role of fast neutron irradiation in the structural modification of samples. Real time in-situ electrical measurement is performed to investigate the change in insulation resistance of Al2O3 due to radiation induced conductivity at low flux regime. During neutron irradiation, a significant transient decrease in insulation resistance is observed which recovers relative higher value just after neutron exposure is switched off. XRD results of 14 MeV neutron irradiated samples suggest annealing effect. Impact of relatively low energy neutrons on the structural properties is also studied using Am-Be neutrons. In this case, clustering is observed on the sample surface after prolonged neutron exposure. The structural characterizations of pristine and irradiated Al2O3 samples are performed using XRD, SEM, and EDX. The results from these characterizations are analysed and interpreted in the manuscript.