• Title/Summary/Keyword: Irradiated food

Search Result 846, Processing Time 0.029 seconds

Biological Quality and Storage Characteristics of Gamma-Irradiated Whilte Ginseng (감마선 조사된 백삼의 생물학적 품질 및 저장특성)

  • 권중호;변명우;이수정;이수정;정형욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.40-46
    • /
    • 1999
  • Microbiological quality of commercial white ginseng was examined, together with investigation on its water absorption pattern and radiosensitivity of molds isolated from the samples. Comparative effects of phosphine fumigation and gamma irradiation on microbial control and disinfestation of the samples packed in a commercial laminated film and stored for six months at ambient(20oC, 70% RH) and accelerated(40oC, 90% RH) conditions were studied. Commercial white ginseng was contaminated with coliforms by 103~104CFU/g and molds by 102~104CFU/g and thus decontamination process was required for hygienic quality and storage stability. Phosphine fumigation showed no sterilizing effects on microbes contaminated, while gamma irradiation at around 5kGy was effective for decontaminating microorganisms, showing D10 values of 0.48~0.60kGy for isolated molds. Even though the storage insects, Plodia interpuctella Hubner and Lasioderma serricorne(cigarette beetle) were easily destroyed by phosphine fumigation, gamma irradiation less than 5kGy was found effective for both purposes to improve biological quality of stored white ginseng, thereby extending the storage life of packed samples resulting from increased critical moisture content by about 1%(Aw 0.76).

  • PDF

Radiation-induced Degradation and Immune Toxicity Reduction of Endosulfan (감마선 조사에 의한 endosulfan의 면역독성 저감)

  • Kim, Hyun-Joo;Kim, Tae-Hoon;Ham, Jun-Sang;Kim, Kee-Hyuk;Jo, Cheo-Run
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.451-454
    • /
    • 2012
  • Endosulfan is an organochlorine pesticide that is widely used throughout the world for higher agricultural production. Its extreme toxicity, however, has caused health and environment concerns that have led to an interest in detoxification. In this study, the radiolytic degradation of endosulfan was investigated. Endosulfan in methanol solution (100 ppm) was irradiated at 0, 10, 30, and 50 kGy, and subsequent changes in immune toxicity and degradation of endosulfan were observed. The concentration of endosulfan that was used in this experiment did not affect the cell proliferation. The irradiation of endosulfan decreased the production of NO, indicating a decrease in the immune toxicity of endosulfan by irradiation. The concentration of endosulfan was significantly reduced by irradiation in a dose-dependent manner. The results suggest that gamma irradiation can degrade endosulfan and can reduce its immune toxicity.

Rationale and Definition of The Criteria of The Efficiency of The Biological Activity of Optical Radiation on Animal Organism.

  • Chervinsky, Leonid S.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2018
  • In today's technological development of human society more and more influence on the lives of biological organisms different electromagnetic radiation. Therefore, the study and analysis of the mechanisms of their effects is an urgent task. The purpose of research - the study of the primary mechanisms of interaction of photons of optical radiation with the structures of biological objects, using the laws of quantum mechanics and biophysics. Photobiological basis of the mechanism of action of EMR optical range is the energy absorption of light quanta (photons) by atoms and molecules of biological structures (law Grotgus-Draper), which resulted in the formation of electronically excited states of these molecules with the transfer of photon energy (internal photoeffect). This is accompanied by electrolytic dissociation and ionization of biological molecules. The degree of manifestation of photobiological effects in the body depends on the intensity of the optical radiation, which is inversely proportional to the square of the distance from the source to the irradiated surface. Accordingly, in practice, determine not the intensity and irradiation dose at a certain distance from the source of exposure by the exposure time.

Adoptive Transfer of Colon Cancer Derived Peptide-specific CD8+ T Cells in HHD Mice (HHD Mice를 이용한 대장암세포유래 펩타이드 특이적 CD8+ T 세포의 입양전이)

  • Jung, Hun-Soon;Ahn, In-Sook;Do, Hyung-Ki;Lemonnier, Francois A.;Tirosh, Boaz;Tzehoval, Esther;Vadai, Ezra;Eisenbach, Lea;Do, Myoung-Sool
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • Background: 1-8D gene is a member of human 1-8 interferon inducible gene family and is shown to be overexpressed in fresh colon cancer tissues. Three peptides 1-6, 3-5 and 3-7 derived from 1-8D gene were shown to have immunogenicity against colon cancer. Methods: To study tumor immunotherapy of these peptides we established an adoptive transfer model. $D^{b-/-}{\times}{\beta}2$ microglobulin (${\beta}2m$) null mice transgenic for a chimeric HLA-A2.1/$D^b-{\beta}2m$ single chain (HHD mice) were immunized with irradiated peptide-loaded RMA-S/HHD/B7.1 transfectants. Spleens were removed after last immunization, and splenocytes were re-stimulated in vitro. Lymphocytes from vaccinated HHD mice were transferred together with IL-2 to the tumor bearing nude mice that were challenged S.C. with the HCT/HHD/B7 colon carcinoma cell line that was found to grow in these mice. Results: Peptide 3-5 was found to be highly effective in CTL activity. Adoptively transferred anti-peptide 3-5 cytolytic T lymphocytes caused significant retardation in tumor growth. Conclusion: This study shows that peptide 3-5 can be the most effective candidate for the vaccine of adoptive immunotherapy against colon cancer.

Nonthermal Sterilization of Pathogenic Escherichia coli by Intense Pulsed Light Using a Batch System (회분식 광펄스 처리에 의한 병원성 대장균의 비가열 살균)

  • Kim, Ae-Jin;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.81-86
    • /
    • 2015
  • Intense pulsed light (IPL), a nonthermal technology, has attracted increasing interest as a food processing technology. However, its efficacy in inactivating microorganisms has not been evaluated thoroughly. In this study, we investigated the influence of IPL treatment on the inactivation of Escherichia coli O157:H7 depending on light intensity, treatment time, and pulse number. Increased light intensity from 500 V to 1,000 V, raised the inactivation rate at room temperature. At 1000 V, the cell numbers were reduced by 7.1 log cycles within 120 s. In addition, increased pulse number or decreased distance between the light source and sample surface also led to an increase in the inactivation rate. IPL exposure caused a significant increase in the absorption at 260 nm of the suspending agent used in our experiments. This indicates that IPL-treated cells were damaged, consequently releasing intracellular materials. The growth of IPL-irradiated cells were delayed by about 5 h. The degree of damage to the cells after IPL treatment was confimed by transmission electron microscopy.

Active Immunization Study of Colon Cancer Derived 1-8D Peptide in HHD Mice

  • Jung, Hun-Soon;Ahn, In-Sook;Do, Hyung-Ki;Lemonnier, Francois A.;Song, Kuk-Hyun;Do, Myoung-Sool
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • Background: 1-8D gene is a member of human 1-8 interferon inducible gene family and was shown to be overexpressed in fresh colon cancer tissues. Three peptides 1-6, 3-5 and 3-7 derived from human 1-8D gene were shown to have immunogenicity against colon cancer. Methods: To study tumor immunotherapy, of three peptides we established an active immunization model using HHD mice. $D^{b-/-}{\times}{\beta}2$ microglobulin $({\beta}2m)$ null mice transgenic for a chimeric HLA-$A2.1/D^{b-}\;{\beta}2m$ single chain (HHD mice) were challenged with B16/HHD/1-8D tumor cells and were immunized with irradiated peptide-loaded RMA- S/HHD/B7.1 transfectants. In therapy model tumor growth was retarded in HHD mice that were injected with 3-5 peptide-loaded RMA-S/HHD/B7.1. In survival test vaccination with 1-8D-derived peptide protects HHD mice from tumor progression after tumor challenge. Results: These studies show that peptide 3-5 derived from 1-8D gene can be the most effective candidate for the vaccine of immunotherapy against colon cancer and highlight 1-8D gene as putative colon carcinoma associated antigens. Conclusion: We demonstrated that RMA-S/HHD/ B7.1 loaded with 1-8D peptides, especially 3-5, immunization generates potent antitumor immunity against tumor cells in HHD mice and designed active immunization as proper immunotherapeutic protocols.

Analysis of gamma-ray-induced DNA damage in human, mouse and rat peripheral blood lymphocytes using single-cell gel electrophoresis (단세포 전기영동법을 이용한 인체, 마우스 및 랫드 림프구의 방사선에 의해 유발된 DNA 손상 측정)

  • Oh, Heon;Jung, Uhee;Park, Hae-Ran;Kim, Sung-Ho;Jo, Sung-Kee
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.41-47
    • /
    • 2004
  • The alkaline single-cell gel electrophoresis (SCGE) assay, called the comet assay, has been applied to detect DNA damage induced by a number of chemicals and biological factors in vivo and in vitro. The DNA damage was analysed by tail moment (TM) and tail length (TL), which were markers of DNA strand breaks in SCGE. Human, mouse and rat peripheral blood lymphocytes (PBLs) were irradiated with different doses of $^{60}Co$ ${\gamma}$-rays, e.g. 1, 2, 4, and 8 Gy at a dose rate of 1 Gy/min. A dose-dependent increase in TM (p<0.01) and TL (p<0.01) was obtained at all the radiation doses (1-8 Gy) in human, mouse and rat PBLs. Mouse PBLs were more sensitive than human PBLs which were in turn more sensitive than rat PBLs when the treated dosages were 1 and 2 Gy. However, human PBLs were more sensitive than mouse PBLs which were in turn more sensitive than rat PBLs when the irradiation dosages were 4 and 8 Gy. Data from all three species could be fitted to a linear-quadratic model. These results indicated that there may be inherent differences in the radio-sensitivity among PBLs of mammalian species.

Effects of Electron Beam Irradiation on Pathogen Inactivation, Quality, and Functional Properties of Shell Egg during Ambient Storage

  • Kim, Hyun-Joo;Yun, Hye-Jeong;Jung, Samooel;Jung, Yeon-Kuk;Kim, Kee-Hyuk;Lee, Ju-Woon;Jo, Cheor-Un
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.603-608
    • /
    • 2010
  • This study investigated the effects of electron beam irradiation on pathogens, quality, and functional properties of shell eggs during storage. A 1st grade 1-d-old egg was subjected to electron beam irradiation at 0, 1, 2, and 3 kGy, after which the number of total aerobic bacteria, reduction of inoculated Escherichia coli and Salmonella Typhimurium, egg quality, and functional properties were measured. Electron beam irradiation at 2 kGy reduced the number of E. coli and S. Typhimurium cells to a level below the detection limit (<$10^2$ CFU/g) after 7 and 14 d of storage. Egg freshness as measured by albumen height and the number of Haugh units was significantly reduced by 1-kGy irradiation. The viscosity of irradiated egg white was also significantly decreased by increased irradiation, whereas its foaming ability was increased. Electron beam irradiation also increased lipid oxidation in egg yolks. These results suggest that electron beam irradiation reduces the freshness of shell eggs while increasing the oxidation of egg yolk and improving important functional properties such as foaming capacity. Electron beam irradiation can also be applied to the egg breaking process since the irradiation reduces the viscosity of egg white, which can allow egg whites and yolks to be separated with greater efficiency.

Antitumor Activity of Cell Suspension Culture of Green Tea Seed (Camellia sinensis L.)

  • Choi, Jae-Hoon;Yoon, Sang-Kun;Lee, Keyong-Ho;Seo, Min-Soo;Kim, Doo-Hwan;Hong, Seung-Beom;Kim, Ji-Yeon;Paik, Hyun-Dong;Kim, Chang-Han
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.396-401
    • /
    • 2006
  • The objective of this study was to investigate the antitumor activity of suspension cultures of tea callus cells grown in the presence of different concentrations of the growth regulator 2,4-dichlorophenoxy acetic acid (2,4-D) with or without light irradiation. The methanol and ethanol extracts of precipitated cells (MEP, EEP) exhibited stronger inhibitory effects on the growth of tumor cell lines than the water extract of precipitated cells (WEP) or the supernatant Compared to culture under dark conditions, exposure to light irradiation led to significantly higher antitumor activity. The MEP from light irradiated cells at $250{\mu}g/mL$ with 2.0mg/L 2,4-D displayed more than 64% growth inhibition of HEP-2 cells, whereas normal cells showed less than 25% growth inhibition. The some fractions of MEP obtained from Diaion HP-20 column chromatography displayed the majority of inhibitory activity against the HEP-2 cell line. These results show that 2,4-D, and light stimulated the synthesis of antitumor compounds.

Effect of Electron Benm Irradiation on the Oxidative and Microbiological Stability of Ground Pork during Storage (전자선 조사가 분쇄 돈육의 저장 중 산화와 미생물적 안정성에 미치는 영향)

  • Koh, Kwang-Hwan;Whang, Key
    • Food Science of Animal Resources
    • /
    • v.22 no.4
    • /
    • pp.316-321
    • /
    • 2002
  • Fresh ground pork was irradiated with the electron beam, and the microbiological and oxidative stability of ground pork was examined during refrigerated and frozen storage. During both storage, with the increase in the irradiation dose from 0 to 3.0 kGy, the inhibition effect of the growth of the total aerobic bacteria and the mesophiles also increased. Psychrotrophic bacteria were not detected at all in the whole experiment. On the other hand, electron beam irradiation promoted the oxidative rancidity of ground pork during refrigerated and frozen storage. The catalytic effect of oxidation was more pronounced with the electron beam dose of 3.0 than that of 1.5 kGy. As a result, the control of lipid oxidation must be achieved to fully utilize the sterilization effect of electron beam in the ground pork.