Adoptive Transfer of Colon Cancer Derived Peptide-specific CD8+ T Cells in HHD Mice

HHD Mice를 이용한 대장암세포유래 펩타이드 특이적 CD8+ T 세포의 입양전이

  • Jung, Hun-Soon (School of Life and Food Sciences, Handong Global University) ;
  • Ahn, In-Sook (School of Life and Food Sciences, Handong Global University) ;
  • Do, Hyung-Ki (School of Life and Food Sciences, Handong Global University) ;
  • Lemonnier, Francois A. (AIDS-retrovirus Department, Antiviral Cellular Unit, Pasteur Institute) ;
  • Tirosh, Boaz (Department of Immunology, The Weizmann Institute of Science) ;
  • Tzehoval, Esther (Department of Immunology, The Weizmann Institute of Science) ;
  • Vadai, Ezra (Department of Immunology, The Weizmann Institute of Science) ;
  • Eisenbach, Lea (Department of Immunology, The Weizmann Institute of Science) ;
  • Do, Myoung-Sool (School of Life and Food Sciences, Handong Global University)
  • 정헌순 (한동대학교 생명과학부) ;
  • 안인숙 (한동대학교 생명과학부) ;
  • 도형기 (한동대학교 생명과학부) ;
  • ;
  • ;
  • ;
  • ;
  • ;
  • 도명술 (한동대학교 생명과학부)
  • Published : 2004.03.31

Abstract

Background: 1-8D gene is a member of human 1-8 interferon inducible gene family and is shown to be overexpressed in fresh colon cancer tissues. Three peptides 1-6, 3-5 and 3-7 derived from 1-8D gene were shown to have immunogenicity against colon cancer. Methods: To study tumor immunotherapy of these peptides we established an adoptive transfer model. $D^{b-/-}{\times}{\beta}2$ microglobulin (${\beta}2m$) null mice transgenic for a chimeric HLA-A2.1/$D^b-{\beta}2m$ single chain (HHD mice) were immunized with irradiated peptide-loaded RMA-S/HHD/B7.1 transfectants. Spleens were removed after last immunization, and splenocytes were re-stimulated in vitro. Lymphocytes from vaccinated HHD mice were transferred together with IL-2 to the tumor bearing nude mice that were challenged S.C. with the HCT/HHD/B7 colon carcinoma cell line that was found to grow in these mice. Results: Peptide 3-5 was found to be highly effective in CTL activity. Adoptively transferred anti-peptide 3-5 cytolytic T lymphocytes caused significant retardation in tumor growth. Conclusion: This study shows that peptide 3-5 can be the most effective candidate for the vaccine of adoptive immunotherapy against colon cancer.

Keywords

Acknowledgement

Supported by : 과기부

References

  1. Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 61;759-767, 1990 https://doi.org/10.1016/0092-8674(90)90186-I
  2. Bodmer WF, Bailey CJ, Bodmer J, Bussey HJ, Ellis A, Gorman P, Lucibello FC, Murday VA, Rider SH, Scambler P, et al:Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328;614-616, 1987 https://doi.org/10.1038/328614a0
  3. Cottrell S, Bicknell D, Kaklamanis L, Bodmer WF: Molecular analysis of APC mutations in familial adenomatous polyposis and sporadic colon carcinomas. Lancet 340;626-630, 1992 https://doi.org/10.1016/0140-6736(92)92169-G
  4. Kerr D: Clinical development of gene therapy for colorectal cancer. Nat Rev Cancer 3;615-622, 2003. https://doi.org/10.1038/nrc1147
  5. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW: Gene expression profiles in normal and cancer cells. Science 276;1268-1272, 1997 https://doi.org/10.1126/science.276.5316.1268
  6. Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B: HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med 185;2043-2051, 1997 https://doi.org/10.1084/jem.185.12.2043
  7. Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino A, Garcia Z, Michel ML, Jack RW, Jung G, Kosmatopoulos K, Mateo L, Suhrbier A, Lemonnier FA, Langlade-Demoyen P: H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur J Immunol 29;3112-3121, 1999 https://doi.org/10.1002/(SICI)1521-4141(199910)29:10<3112::AID-IMMU3112>3.0.CO;2-Q
  8. Lewin AR, Reid LE, McMahon M, Stark GR, Kerr IM: Molecular analysis of a human interferon-inducible gene family. Eur J Biochem 199;417-423, 1991 https://doi.org/10.1111/j.1432-1033.1991.tb16139.x
  9. Schmidt-Wolf IG, Finke S, Trojaneck B, Denkena A, Lefterova P, Schwella N, Heuft HG, Prange G, Korte M, Takeya M, Dorbic T, Neubauer A, Wittig B, Huhn D: Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. Br J Cancer 81;1009-1016, 1999 https://doi.org/10.1038/sj.bjc.6690800
  10. Mahvi DM, Madsen JA, Witt PL, Sondel PM: Interferon alpha enhances expression of TAG-72 and carcinoembryonic antigen in patients with primary colorectal cancer. Cancer Immunol Immunother 40;311-314, 1995 https://doi.org/10.1007/BF01519631
  11. Dansky-Ullmann C, Salgaller M, Adams S, Schlom J, Greiner JW:Synergistic effects of IL-6 and IFN-gamma on carcinoembryonic antigen (CEA) and HLA expression by human colorectal carcinoma cells: role for endogenous IFN-beta. Cytokine 7;118-129, 1995 https://doi.org/10.1006/cyto.1995.1016
  12. Tsang KY, Kashmiri SV, Qi CF, Nieroda C, Calvo B, De Filippi R, Greiner JW, Primus FJ, Schlom J: Transfer of the IL-6 gene into a human colorectal carcinoma cell line and consequent enhancement of tumor antigen expression. Immunol Lett 36;179-185, 1993 https://doi.org/10.1016/0165-2478(93)90050-C
  13. Firat H, Tourdot S, Ureta-Vidal A, Scardino A, Suhrbier A, Buseyne F, Riviere Y, Danos O, Michel ML, Kosmatopoulos K, Lemonnier FA: Design of a polyepitope construct for the induction of HLA-A0201-restricted HIV 1-specific CTL responses using HLA-A*0201 transgenic, H-2 class I KO mice. Eur. J. Immunol 10;3064-3074, 2001
  14. Carmon L, Bobilev-Priel I, Brenner B, Bobilev D, Paz A, Bar-Haim E, Tirosh B, Klein T, Fridkin M, Lemonnier F, Tzehoval E, Eisenbach L: Characterization of novel breast carcinoma-associated BA46-derived peptides in HLA-A2.1/D(b)-beta2m transgenic mice. J.Clin. Invest 110;453-462, 2002. https://doi.org/10.1172/JCI200214071
  15. Graff-Dubois S, Faure O, Gross DA, Alves P, Scardino A, Chouaib S, Lemonnier FA, Kosmatopoulos K: Generation of CTL recognizing an HLA-A*0201-restricted epitope shared by MAGEA1,-A2, -A3, -A4, -A6, -A10, and -A12 tumor antigens: implication in a broad-spectrum tumor immunotherapy. J. Immunol 169;575-580, 2002 https://doi.org/10.4049/jimmunol.169.1.575
  16. Scardino A, Gross DA, Alves P, Schultze JL, Graff-Dubois S, Faure O, Tourdot S, Chouaib S, Nadler LM, Lemonnier FA, Vonderheide RH, Cardoso AA, Kosmatopoulos K: HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J. Immunol 168;5900-5906, 2002 https://doi.org/10.4049/jimmunol.168.11.5900
  17. Passoni L, Scardino A, Bertazzoli C, Gallo B, Coluccia AM, Lemonnier FA, Kosmatopoulos K, Gambacorti-Passerini C: ALK as a novel lymphoma-associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8+ T-cell epitopes. Blood 99;2100-2106, 2002 https://doi.org/10.1182/blood.V99.6.2100
  18. Scardino A, Alves P, Gross DA, Tourdot S, Graff-Dubois S, Angevin E, Firat H, Chouaib S, Lemonnier F, Nadler LM, Cardoso AA, Kosmatopoulos K: Identification of HER-2/neu immunogenic epitopes presented by renal cell carcinoma and other human epithelial tumors. Eur. J. Immunol 11;3261-3270, 2001.
  19. Brinster C, Muguet S, Lone YC, Boucreux D, Renard N, Fournillier A, Lemonnier F, Inchauspe G: Different hepatitis C virus nonstructural protein 3 (Ns3)-DNA- expressing vaccines induce in HLA-A2.1 transgenic mice stable cytotoxic T lymphocytes that target one major epitope. Hepatology 34;1206-1217, 2001 https://doi.org/10.1053/jhep.2001.29304
  20. Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, Thompson CB: CD28 costimulation can promote T cell survival by enhancing the expression of Bcl- XL. Immunity 3;87-98, 1995. https://doi.org/10.1016/1074-7613(95)90161-2
  21. Harding FA, Allison JP: CD28-B7 interactions allow the induction of CD8+ cytotoxic T lymphocytes in the absence of exogenous help. J Exp Med 177;1791-1796, 1993. https://doi.org/10.1084/jem.177.6.1791
  22. Malek TR, Yu A, Scibelli P, Lichtenheld MG, Codias EK: Broad programming by IL-2 receptor signaling for extended growth to multiple cytokines and functional maturation of antigen-activated T cells. J Immunol 166;1675-1683, 2001 https://doi.org/10.4049/jimmunol.166.3.1675
  23. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD Jr: Peptide-pulsed dendritic cells induce antigen-specific CTLmediated protective tumor immunity. J Exp Med 183;283-287, 1996. https://doi.org/10.1084/jem.183.1.283
  24. Paglia P, Chiodoni C, Rodolfo M, Colombo MP: Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 183;317-322, 1996 https://doi.org/10.1084/jem.183.1.317
  25. Young JW, Inaba K: Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J Exp Med 183;7-11, 1996 https://doi.org/10.1084/jem.183.1.7
  26. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4;328-332, 1998. https://doi.org/10.1038/nm0398-328
  27. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G:Vaccination with mage-3A1 peptide-pulsed mature, monocytederived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190;1669-1678, 1999 https://doi.org/10.1084/jem.190.11.1669
  28. Bellone M, Cantarella D, Castiglioni P, Crosti MC, Ronchetti A, Moro M, Garancini MP, Casorati G, Dellabona P: Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. J Immunol 165;2651-2656, 2000 https://doi.org/10.4049/jimmunol.165.5.2651
  29. Schreurs MW, Eggert AA, de Boer AJ, Vissers JL, van Hall T, Offringa R, Figdor CG, Adema GJ: Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res 60;6995-7001, 2000
  30. Deblandre GA, Marinx OP, Evans SS, Majjaj S, Leo O, Caput D, Huez GA, Wathelet MG: Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J Biol Chem 270;23860-23866, 1995 https://doi.org/10.1074/jbc.270.40.23860
  31. Hisamatsu T, Watanabe M, Ogata H, Ezaki T, Hozawa S, Ishii H, Kanai T, Hibi T: Interferon-inducible gene family 1-8U expression in colitis-associated colon cancer and severely inflamed mucosa in ulcerative colitis. Cancer Res 59;5927-5931, 1999
  32. Clave E, Carosella ED, Gluckman E, Socie G: Radiation- enhanced expression of interferon-inducible genes in the KG1a primitive hematopoietic cell line. Leukemia 11;114-119, 1997 https://doi.org/10.1038/sj.leu.2400528
  33. Daido H, Zhou MY, Gomez-Sanchez CE: Angiotensin stimulates the expression of interferon-inducible genes in H295R cells. Mol Cell Endocrinol 176;21-27, 2001 https://doi.org/10.1016/S0303-7207(01)00478-6