• 제목/요약/키워드: Iron-oxide

검색결과 750건 처리시간 0.021초

철산화물의 합성 및 이를 이용한 비소의 흡착제거 (Synthesis of Iron Oxide and Adsorption of Arsenic on Iron Oxide)

  • 김연정;최식영;김영훈
    • 한국환경과학회지
    • /
    • 제28권1호
    • /
    • pp.99-106
    • /
    • 2019
  • Arsenic is among the heavy metals commonly found in aqueous environments. Iron oxide is known as an efficient adsorbent for the arsenic. A new synthetic method was applied to provide iron oxide giving a large specific surface area. The mixing method affects the formation of iron oxide. Ultrasonic waves assisted the formation of very fine iron oxide in an organic phase. The synthesized iron oxide is amorphous type with a high surface area of more than $181.3m^2/g$. Sorption capacity of the synthesized adsorbent was relatively very high for arsenic and varied depending on the oxidation state of arsenic: a higher capacity was obtained with As(V). Lower solution pH provided a higher sorption capacity for As(V). The competitive effect of co-exist anions such as chloride, nitrate, and sulfate was minimal in sorption capacity of the iron oxide for arsenic.

도자기 소지구성 산화철, 산화마그네슘이 유약과의 반응 (Reaction Iron Oxide and Magnesium Oxide in Ceramics Body with Glaze)

  • 정석;황동하;이병하
    • 한국재료학회지
    • /
    • 제24권7호
    • /
    • pp.363-369
    • /
    • 2014
  • This is the study on diffusion of ceramic body oxide compounds to glaze. For ceramic bodies, no ferrous oxides contain white ware, celadon, and 3 wt% iron oxides contained white ware was used in this experiment. These ceramic bodies were glazed by transparency glaze, iron oxides contained glaze, and glaze made by pine tree ash that treated in 1240 degree, under reduction condition for an hour. An electron probe microanalyzer(EPMA) was used to study diffusion of oxides and to calculate distance of ceramics bodies. As a result, only iron oxide and magnesium oxide from the body diffused to glaze, and also made a band which shown very thin layer of iron oxide and magnesium oxide between the body and glaze. The densest band of iron oxide formed 100 to $150{\mu}m$ in the glaze, and the densest band of magnesium oxide was found 50 to $100{\mu}m$ in the glaze. Therefore, it could be concluded that iron oxide in the body is diffused to the glaze and it affects the color of glaze, even though iron oxide exists in the glaze. Furthermore, the thickness of the glaze has an effect on the color of celadon.

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

酸化鐵産業의 開發動向 (An update technology trend in iron oxide)

  • 손진군
    • 자원리싸이클링
    • /
    • 제13권6호
    • /
    • pp.3-8
    • /
    • 2004
  • 산화철의 국제동향에 대하여 각 지역간의 수출입동향과 최근에 급속하게 성장하고 잇는 중국의 산화철업계 동향에 대하여 소개하였다. 특히 세계 산화철 교역량은 산화철업계의 기술발전과 각국이 처한 환경에 따라 변화하며, 산화철의 주요용도중 하나인 안료용도의 경우 건축경기에 큰 영향을 받는다. 중국의 산화철업계는 전반적으로 크게 성장한 반면 다국적 기업의 진출에 따른 기술력 향상과 반대급부로 경쟁력 약한 중국내 기업정리등이 수반되었다. 산화철산업의 발전을 위하여는 타소재와의 가격경쟁력도 중요하지만 새로운 응용분야의 개척이 필요하다. 본 기술자료에서는 최근에 관심이 집중되는 산화철 나노분말의 신용도 및 특성에 대하여 소개하였다.

Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

  • Meng, Xiangpeng;Ryu, Jina;Kim, Bumsik;Ko, Sanghoon
    • Clinical Nutrition Research
    • /
    • 제5권3호
    • /
    • pp.172-179
    • /
    • 2016
  • Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry.

양극산화로 제조된 다공성 나노구조 철 산화막의 열처리 조건에 따른 광전기화학적 성질 (Photoelectrochemical performance of anodized nanoporous iron oxide based on annealing conditions)

  • 정동헌;유정은;이기영
    • 한국표면공학회지
    • /
    • 제56권4호
    • /
    • pp.265-272
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is one of the promising methods for hydrogen production by solar energy. Iron oxide has been effectively investigated as a photoelectrode material for PEC water splitting due to its intrinsic property such as short minority carrier diffusion length. However, iron oxide has a low PEC efficiency owing to a high recombination rate between photoexcited electrons and holes. In this study, we synthesized nanoporous structured iron oxide by anodization to overcome the drawbacks and to increase surface area. The anodized iron oxide was annealed in Ar atmosphere with different purging times. In conclusion, the highest current density of 0.032 mA/cm2 at 1.23 V vs. RHE was obtained with 60 s of pursing for iron oxide(Fe-60), which was 3 times higher in photocurrent density compared to iron oxide annealed with 600 s of pursing(Fe-600). The resistances and donor densities were also evaluated for all the anodized iron oxide by electrochemical impedance spectra and Mott-Schottky plot analysis.

Flame Synthesis of Silica-Coated Iron Oxide Nanoparticles and Their Characterization

  • Jun, Kimin;Yang, Sangsun;Lee, Jeonghoon;Pikhitsa, Peter V.;Choi, Mansoo
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.209-219
    • /
    • 2013
  • We have used the modified diffusion flame burner to synthesize silica coated iron oxide nanoparticles having enhanced superparamagnetic property. Silica-encapsulated iron oxide particles were directly observed using a high resolution transmission electron microscope. From the energy dispersive X-ray spectroscopy (EDS) and zeta potential measurements, the iron oxide particles were found to be completely covered by a silica coating layer. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements revealed that the iron oxide core consists of ${\gamma}-Fe_2O_3$ rather than ${\alpha}-Fe_2O_3$. Our magnetization measurements support this conclusion. Biocompatibility test of the silica-coated iron oxide nanoparticles is also conducted using the protein adsorption onto the coated particle.

산화철산업(酸化鐵産業)의 개발동향(開發動向) (An update technology trend in iron oxide)

  • 손진군
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2005년도 제13회 산화철워크샵
    • /
    • pp.47-58
    • /
    • 2005
  • 산화철의 국제동향에 대하여 각 지역간의 수출입동향과 최근에 급속하게 성장하고 있는 중국의 산화철업계 동향에 대하여 소개하였다. 특히 세계 산화철 교역량은 산화철업계의 기술발전과 각국이 처한 환경에 따라 변화하며, 산화철의 주요용도중 하나인 안료용도의 경우 건축경기에 큰 영향을 받는다. 중국의 산화철업계는 전반적으로 크게 성장한 반면 다국적 기업의 진출에 따른 기술력 향상과 반대급부로 경쟁력 약한 중국내 기업정리등이 수반되었다. 산화철산업의 발전을 위하여는 타소재와의 가격경쟁력도 중요하지만 새로운 응용분야의개척이 필요하다. 본기술자료에서는 최근에 관심이 집중되는 산화철 나노분말에 대하여 신용도 및 특성에 대하여 소개하였다.

  • PDF

Effect of Batch Melting Temperature and Raw Material on Iron Redox State in Sodium Silicate Glasses

  • Mirhadi, Bahman;Mehdikhani, Behzad
    • 한국세라믹학회지
    • /
    • 제48권2호
    • /
    • pp.117-120
    • /
    • 2011
  • In this study, the redox state of iron in sodium silicate glasses was varied by changing the melting conditions, such as the melting temperature and particle size of iron oxide. The oxidation states of the iron ion were determined by wet chemical analysis and UV-Vis spectroscopy methods. Iron commonly exists as an equilibrium mixture of ferrous ions, $Fe^{2+}$, and ferric ions $Fe^{3+}$. In this study, sodium silicate glasses containing nanoparticles of iron oxide (0.5% mol) were prepared at various temperatures. Increase of temperature led to the transformation of ferric ions to ferrous ions, and the intensity of the ferrous peak in 1050 nm increased. Nanoparticle iron oxide caused fewer ferrous ions to be formed and the $\frac{Fe^{2+}}{Fe^{3+}}$ equilibrium ratio compared to that with micro-oxide iron powder was lower.

알루미늄 함량에 따른 알루미늄 주철의 내산화성에 관한 연구 (A Study on the Oxidation Resistance of Aluminum Cast Iron by Aluminum Content)

  • 김동혁
    • 한국주조공학회지
    • /
    • 제40권6호
    • /
    • pp.135-145
    • /
    • 2020
  • Aluminum cast iron has excellent oxidation resistance, sulfurization resistance, and corrosion resistance. However, the ductility at room temperature is insufficient, and at temperatures above 600?, the strength drops sharply and practicality is limited. In the case of heat-resistant cast iron, high-temperature materials containing Cr and Ni account for 30 to 50% or more. However, these high-temperature materials are expensive. Aluminum heat-resistant cast iron is considered as a substitute for expensive heat-resistant materials. Oxidation due to the aging temperature and holding time conditions increases more in 0 wt.% Al-cast iron than in 2 and 4 wt.% Al-cast iron according to oxidized weight and gravimetric oxide layer thickness measurements. As a result of observing the cross-section of the oxide layer, it was found to contain 0 wt.% of Al-cast iron silicon oxide-containing SiO2 or Fe2SiO4 oxide film. In cast iron containing aluminum, the thickness of the internal oxide layer due to aluminum increases as the aging temperature and retention time increase, and the amount of the iron oxide layer generated on the surface decreases.