• Title/Summary/Keyword: Iron surface

Search Result 1,092, Processing Time 0.03 seconds

A study on the microstructure change during the welding of a cast iron with a Fe-Mn-Al steel powder (주철과 Fe-Mn-Al강 이종금속 용접부의 조직변화에 관한 연구)

  • 김경중;서정현
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.35-45
    • /
    • 1990
  • Casting are widely used nodays as complicated and diversified forming materials due to its superior castability. However the welding of cast iron has not been accompaniced satisfactory resulting in an microstructure change happened in the heat affected zone (HAZ), especially the graphite are formed and shaped consecutively in the area and it has great impact on the crack occuring and growth together with martensite forming in this area. It case of gray cast iron welding, it is required for pre-heat treatment or specific welding consumables to restrain forming the martensite in the HAZ. In this study, by applying the plasma surface overlaid welding. Fe-Mn-Al steel powder has been used for improvement of anti-crackability in the HAZ and much attention has been paid to establish the overlaid welding method for gray cast iron so that optimum welding conditions may prevent the cracking. With our experiments, we have found that to prevent defects which may occur in the HAZ, the overlaid welding technique for gray cast iron has been developed.

  • PDF

A Study on Desalization and Corrosion Products Formed on Salinized Archaeological Iron Artifacts (침염시킨 철기 유물 표면 위에 형성된 부식 생성물과 탈염처리에 대한 연구)

  • Min, Sim-Kun;Lee, Jae-Hyung;Lee, Jae-Bong;An, Byeong-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.44-56
    • /
    • 2007
  • Excavated archaeological iron artifacts are usually conducted the conservation treatment for removal of chloride ions in the corrosion products. However, some iron artifacts are corroded again even after the conservation treatment due to unremoved chloride ions. Therefore, it is important to prevent desalinized artifacts from the occurrence of corrosion after the treatment. In this paper, we investigated the characteristics of corrosion products on salinized iron artifacts and evaluated the variety of desalination methods such as autoclave, intensive washing and NaOH. It was also found that ${\beta}-FeOOH$ (Akaganeite) played an important role on the occurrence of corrosion and the treatment for removal of chloride ions. The extents of desalination were compared between the desalination methods. Results showed that the autoclave method represented the highest efficiency for desalination while the intensive washing method was the lowest.

A Study on the Fabrication of Cast Iron-Babbitt Metal Composite Pipes by Centrifugal Casting Process (원심주조법에 의한 주철-Babbitt Metal 복합관 제조에 관한 연구)

  • Lee, Chung-Do;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.42-49
    • /
    • 1993
  • Conventional manufacturing process for cast iron-babbitt metal composite is complicate and bimetallic bonding by centrifugal casting is also difficult because their melting point is largely different and nonmetallic inclusion exists on outer shell. This study is aiming to simplify multistage process by adding Cu-powder as insert metals during cast iron solidification. The variables on fabrication of composite pipe are mold rotating speed and inner surface temperature of outer metal. The optimum temperature range for fusion bonding between cast iron and Cu-layer was $1100^{\circ}C-1140^{\circ}C$ in case of mold rotating speed was 700rpm. When the inner surface of Cu-layer was at $900^{\circ}C$, the value of interfacial hardness between Cu-layer and babbitt metal were higher than Cu-matrix by forming diffusion layer, interfacial products between Cu-layer and babbitt metal are proved to be $Cu_6Sn_5({\eta})$by XRD.

  • PDF

The Influence of H+ and Cl- Ions on the Corrosion Inhibitive Effect of Poly(para-aminophenol) for Iron in Hydrochloric acid

  • Manivel, P.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.187-193
    • /
    • 2017
  • Polymer amines are found to show distinct corrosion inhibition effects in acidic media. The functional groups of organic compounds have a wide role in the physical and chemical properties, for the inhibition efficiency with respect to steric factors, aromaticity, and electron density. The influence of $H^+$ ions and $Cl^-$ ions on the corrosion inhibitive effect of poly(p-aminophenol) for iron in hydrochloric acid was studied using electrochemical methods such as impedance, linear polarization, and Tafel polarization techniques. The experiments were conducted with and without the inhibitor, poly(p-aminophenol). The concentration range of $H^+$ ions and $Cl^-$ ions are from 1 M to 0.05 M and 1 M to 0.1 M, respectively. With the inhibitor poly(p-aminophenol), this study shows that inhibition efficiency decreases with the reduction of $H^+$ ion and $Cl^-$ ion concentrations in aqueous solution. Further, it reveals that the adsorption of an inhibitor on the surface of iron is dependent on the concentrations of $H^+$ and $Cl^-$ ions in the solution and the adsorption of inhibitor on the iron surface through the cationic form of amine.

Preparation of Anodic Iron Oxide Composite Incorporated with WO3 on the Stainless Steel Type-304 Substrate Through a Single-step Anodization (단일공정 양극산화를 이용한 WO3가 복합된 304 스테인레스 강 산화 피막 제조)

  • Kim, Moonsu;Lee, Jaewon;Lee, Kiyoung;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.257-264
    • /
    • 2020
  • Anodization of Fe and Fe alloys is one of the most promising techniques to obtain iron oxide films applying to the various electrochemical devices due to their electrochemical catalytic properties. In this study, we investigate on the preparation of anodic iron oxide composite incorporated with WO3 through a single-step anodization of stainless steel type-304 (STS304) as a substrate. The effects of applied voltage and tungsten precursor on the structural characteristics of iron oxide composite with different amount of incorporated WO3 were observed. It is demonstrated that when the voltage of 60 V applied with 20 mM of Na2WO4 as a precursor, anodic iron oxide composite with a large pore diameter and a thick oxide length in which WO3 is uniformly incorporated is obtained.

Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent

  • Raji, Jeevitha R.;Palanivelu, Kandasamy
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.61-77
    • /
    • 2016
  • $NanoTiO_2$ was synthesized by ultrasonication assisted sol-gel process and subjected to iron doping and carbon-iron codoping. The synthesized catalysts were characterized by XRD, HR-SEM, EDX, UV-Vis absorption spectroscopy and BET specific surface area analysis. The average crystallite size of pure $TiO_2$ was in the range of 30 - 33 nm, and that of Fe-$TiO_2$ and C-Fe $TiO_2$ was in the range of 7 - 13 nm respectively. The specific surface area of the iron doped and carbon-iron codoped nanoparticles was around $105m^2/g$ and $91m^2/g$ respectively. The coupled semiconductor photo-Fenton's activity of the synthesized catalysts was evaluated by the degradation of a cationic dye (C.I. Basic blue 9) and an anionic dye (C.I. Acid orange 52) with concurrent investigation on the operating variables such as pH, catalyst dosage, oxidant concentration and initial pollutant concentration. The most efficient C-Fe codoped catalyst was found to effectively destruct synthetic dyes and potentially treat real textile effluent achieving 93.4% of COD removal under minimal solar intensity (35-40 kiloLUX). This reveals the practical applicability of the process for the treatment of real wastewater in both high and low insolation regimes.

Study on the Fatigue Resistance of Gray Cast Iron in CO2 Laser Surface Hardening (CO2레이저 표면경화(表面硬化) 처리된 회주철(灰鑄鐵)의 피로특성(疲勞特性)에 관한 연구(硏究))

  • Park, K.W.;Han, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.169-181
    • /
    • 1995
  • This study has been performed to investigate some effects of the power density and traverse speed of laser beam on the optical microstructure, hardness and fatigue resistance of gray cast iron treated by laser surface hardening technique. Optical micrograph has shown that the dissolution of graphite flakes and the coarsening of lath martensite tend to increase with a small amount of retained austenite as the power density increases under the condition of a given traverse speed. Hardness measurements have revealed that as the power density increases, hardness values of outermost surface layer increases from Hv=620 to Hv=647 in case of traverse speed of 2.0m/min at gray cast iron. Fatigue test has exhibited that the fatigue strength of laser surface hardened specimen is superier compared to that of untreated specimen, showing that values for the fatigue strength at $N_f=10^7$ of gray cast iron laser-surface-hardened at a low power density of $4076w/cm^2$ and a high power density of $8153w/cm^2$ under the condition of a given traverse speed of 2.0m/min are $15kg_f/mm^2$ and $20kg_f/mm^2$, respectively, whereas the fatigue strength of untreated specimen is $11kg_f/mm^2$. Under high stress-low cycle condition a noraml brittleness fracture appears, whereas a ductile fracture with beach mark is observed in the specimen tested under low stress-high cycle condition.

  • PDF

Study on Effect of Particle Size of Ferrous Iron and Polishing Abrasive on Surface Quality Improvement (자기연마가공에서 자성입자와 연마재의 크기에 따른 표면개선 효과)

  • Lee, Sung-Ho;Son, Byung-Hun;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1013-1018
    • /
    • 2014
  • Magnetic Abrasive Polishing (MAP) process is a nontraditional method for polishing the surface of workpiece by using the flexibility of tool. At present, a mixture of polishing abrasives and ferrous particles is used as the tool in the MAP process. Previously, an experiment was conducted with different sizes of polishing abrasives with an aim to improve the polishing accuracy. However, the sizes of ferrous particles are also expected to have a dominant effect on the process, warranting a study on the effect of the size of ferrous iron particles. In this study, an experiment was conducted using three different sizes of ferrous particles. Iron powder of average diameters 8, 78 and $250{\mu}m$ was used as ferrous particles. The effect of each ferrous particle size was evaluated by comparing the improvements in surface roughness. The particle size of a ferrous iron was found to play a significant role in MAP and particles of $78{\mu}m$ facilitated the best improvement in surface roughness.

Formation of surface mediated iron colloids during U(VI) and nZVI interaction

  • Shin, Youngho;Bae, Sungjun;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.167-177
    • /
    • 2013
  • We investigated that removal of aqueous U(VI) by nano-sized Zero Valent Iron (nZVI) and Fe(II) bearing minerals (controls) in this study. Iron particles showed different U(VI) removal efficiencies (Mackinawite: 99%, green rust: 95%, nZVI: 91%, magnetite: 87%, pyrite: 59%) due to their different PZC (Point of Zero Charge) values and surface areas. In addition, noticeable amount of surface Fe(II) (181 ${\mu}M$) was released from nZVI suspension in 6 h and it increased to 384 ${\mu}M$ in the presence of U(VI) due to ion-exchange of U(VI) with Fe(II) on nZVI surface. Analysis of Laser-Induced Breakdown Detection (LIBD) showed that breakdown probabilities in both filtrates by 20 and 200 nm sizes was almost 24% in nZVI suspension with U(VI), while 1% of the probabilities were observed in nZVI suspension without U(VI). It indicated that Fe(II) colloids in the range under 20 nm were generated during the interaction of U(VI) and nZVI. Our results suggest that Fe(II) colloids generated via ion-exchange process should be carefully concerned during long-term remediation site contaminated by U(VI) because U could be transported to remote area through the adsorption on Fe(II) colloids.