DOI QR코드

DOI QR Code

Preparation of Anodic Iron Oxide Composite Incorporated with WO3 on the Stainless Steel Type-304 Substrate Through a Single-step Anodization

단일공정 양극산화를 이용한 WO3가 복합된 304 스테인레스 강 산화 피막 제조

  • Kim, Moonsu (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Jaewon (Department of Advanced Science and Technology, Kyungpook National University) ;
  • Lee, Kiyoung (Department of Advanced Science and Technology, Kyungpook National University) ;
  • Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 김문수 (인하대학교 화학공학과) ;
  • 이재원 (경북대학교 미래과학기술융합학과) ;
  • 이기영 (경북대학교 미래과학기술융합학과) ;
  • 김용태 (인하대학교 화학공학과) ;
  • 최진섭 (인하대학교 화학공학과)
  • Received : 2020.10.15
  • Accepted : 2020.10.29
  • Published : 2020.10.31

Abstract

Anodization of Fe and Fe alloys is one of the most promising techniques to obtain iron oxide films applying to the various electrochemical devices due to their electrochemical catalytic properties. In this study, we investigate on the preparation of anodic iron oxide composite incorporated with WO3 through a single-step anodization of stainless steel type-304 (STS304) as a substrate. The effects of applied voltage and tungsten precursor on the structural characteristics of iron oxide composite with different amount of incorporated WO3 were observed. It is demonstrated that when the voltage of 60 V applied with 20 mM of Na2WO4 as a precursor, anodic iron oxide composite with a large pore diameter and a thick oxide length in which WO3 is uniformly incorporated is obtained.

Keywords

References

  1. 원국광, 최태규, 양극산화 기술, 신광문화사 (2003).
  2. H. Masuda, and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, 268 (1995) 1466-1468. https://doi.org/10.1126/science.268.5216.1466
  3. F. Keller, M. S. Hunter, and D. L. Robinson, Structural Features of Oxide Coatings on Aluminum, J. Electrochem. Soc., 100 (1953) 411-419. https://doi.org/10.1149/1.2781142
  4. J. Choi, J. K. Lee, J. H. Lim, and S. J. Kim, Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications, J. Korean Ind. Eng. Chem., 19 (2008) 249-258.
  5. K. Lee, Principle of Anodic TiO2 Nanotube Formations, 공업화학, 28 (2017) 601-606. https://doi.org/10.14478/ace.2017.1011
  6. K. Lee, A. Mazare, and P. Schmuki, One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes, Chem. Rev., 114 (2014) 9385-9454. https://doi.org/10.1021/cr500061m
  7. D. Lee, H. Lee, Y. -T. Kim, K. Lee, and J. Choi, Phase-tuned nanoporous vanadium pentoxide as binder-free cathode for lithium ion battery, Electrochim. Acta, 330 (2020) 135192. https://doi.org/10.1016/j.electacta.2019.135192
  8. D. D. Yao, R. A. Rani, A. P. O'Mullane, K. Kalantar-zadeh, and J. Z. Ou, High Performance Electrochromic Devices Based on Anodized Nanoporous $Nb_2O_5$, J. Phys. Chem. C, 118 (2014) 476-481. https://doi.org/10.1021/jp410097y
  9. B. Sarma, A. L. Jurovitzki, R. S. Ray, Y. R. Smith, S. K. Mohanty, and M. Misra, Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres, Nanotechnology, 26 (2015) 265401. https://doi.org/10.1088/0957-4484/26/26/265401
  10. N. Mukherjee, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, Fabrication of nanoporous tungsten oxide by galvanostatic anodization, J. Mater. Res., 18 (2003) 2296-2299. https://doi.org/10.1557/JMR.2003.0321
  11. S. Matefi-Tempfli, and M. Matefi-Tempfli, Vertically Aligned Nanowires on Flexible Silicone using a Supported Alumina Template prepared by Pulsed Anodization, Adv. Mater., 21 (2009) 4005-4010. https://doi.org/10.1002/adma.200900344
  12. P. M. Perillo, and D. F. Rodriguez, The gas sensing properties at room temperature of $TiO_2$ nanotubes by anodization, Sens. Actuators B - Chem., 171-172 (2012) 639-643. https://doi.org/10.1016/j.snb.2012.05.047
  13. A. Fujishima, and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38. https://doi.org/10.1038/238037a0
  14. H. Yoo, G. Lee, and J. Choi, Binder-free $SnO_2-TiO_2$ composite anode with high durability for lithium-ion batteries, RSC Adv., 9 (2019) 6589. https://doi.org/10.1039/C8RA10358E
  15. C. Zhong, Z. Han, T. Wang, Q. Wang, Z. Shen, Q. Zhou, J. Wang, S. Zhang, X. Jin, S. Li, P. Wang, D. Gao, Y. Zhou, and H. Zhang, Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting, J. Mater. Chem. A, 8 (2020) 10831-10838. https://doi.org/10.1039/D0TA00876A
  16. D. Kang, T. W. Kim, S. R. Kubota, and A. C. Cardiel, Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting, Chem. Rev., 115 (2015) 12839-12887. https://doi.org/10.1021/acs.chemrev.5b00498
  17. A. G. Tamirat, J. Rick, A. A. Dubale, W. -N. Su, B. -J. Hwang, Using hematite for photoelectrochemical water splitting: a review of current progress and challenges, Nanoscale Horiz., 1 (2016) 243-267. https://doi.org/10.1039/C5NH00098J
  18. Y. Zhao, J. Li, Y. Ding, and L. Guan, Single-walled carbon nanohorns coated with $Fe_2O_3$ as a superior anode material for lithium ion batteries, Chem. Commun., 47 (2011), 7416-7418. https://doi.org/10.1039/c1cc12171e
  19. J. Park, H. Yoo, and J. Choi, 3D ant-nest network of ${\alpha}-Fe_2O_3$ on stainless steel for all-in-one anode for Li-ion battery, J. Power Sources, 431 (2019) 25. https://doi.org/10.1016/j.jpowsour.2019.05.054
  20. M. Kim, Y. -T. Kim, and J. Choi, Controlled contribution of Ni and Cr cations to stainless steel 304 electrode: Effect of electrochemical oxidation on electrocatalytic properties, Electrochem. Commun., 117 (2020) 106770. https://doi.org/10.1016/j.elecom.2020.106770
  21. R. R. Rangaraju, K. S. Raja, A. Panday, and M. Misra, An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron, Electrochim. Acta, 55 (2010) 785-793. https://doi.org/10.1016/j.electacta.2009.07.012
  22. Y. Gim, M. Seong, Y. -W. Choi, and J. Choi, $RuO_2$-doping into high-aspect-ratio anodic $TiO_2$ nanotubes by electrochemical potential shock for water oxidation, Electrochem. Commun., 52 (2015) 37. https://doi.org/10.1016/j.elecom.2015.01.004
  23. H. Yoo, K. Oh, G. Lee, and J. Choi, $RuO_2$-Doped Anodic $TiO_2$ Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method, J. Electrochem. Soc., 164 (2017) H104. https://doi.org/10.1149/2.1201702jes
  24. R. Kirchgeorg, W. Wei, K. Lee, S. So, and P. Schmuki, Through-hole, self-ordered nanoporous oxide layers on titanium, niobium and titanium-niobium alloys in aqueous and organic nitrate electrolytes, ChemistryOpen, 1 (2012) 21-25. https://doi.org/10.1002/open.201100012
  25. J. Lee, H. -K. Choi, M. G. Kim, Y. S. Lee, and K. Lee, Formation of porous oxide layer on stainless steel by anodization in hot glycerol electrolyte, 공업화학, 31 (2020) 215-219. https://doi.org/10.14478/ace.2020.1015
  26. K. Kure, Y. Konno, E. Tsuji, P. Skeldon, G. E. Thompson, and H. Habazaki, Formation of self-organized nanoporous anodic films on Type 304 stainless steel, Electrochem. Commun., 21 (2012) 1-4. https://doi.org/10.1016/j.elecom.2012.05.003
  27. E. Song, Y.-T. Kim, and J. Choi, Anion additives in rapid breakdown anodization for nonmetal-doped $TiO_2$ nanotube powders, Electrochemistry Communications, 109 (2019) 106610. https://doi.org/10.1016/j.elecom.2019.106610
  28. H. Yoo, K. Oh, Y. -C. Nah, J. Choi, and K. Lee, Single-Step Anodization for the Formation of $WO_3$-Doped $TiO_2$ Nanotubes Toward Enhanced Electrochromic Performance, ChemElectroChem, 5 (2018) 3379. https://doi.org/10.1002/celc.201800981
  29. H. Yoo, Y. -W. Choi, and J. Choi, $TiO_2$ nanotubes with a doping of ruthenium oxide by single-step anodization for water oxidation applications, ChemCatChem, 7 (2015) 643. https://doi.org/10.1002/cctc.201402787
  30. E. S. Ilton, C. O. Moses, and D. R. Veblen, Using X-ray photoelectron spectroscopy to discriminate among different sorption sites of micas: with implications for heterogeneous reduction of chromate at the mica-water interface, Gechim. Cosmochim. Acta, 64 (2000) 1437-1450. https://doi.org/10.1016/S0016-7037(99)00372-5
  31. S. Kalanur, Structural, Optical, Band Edge and Enhanced Photoelectrochemical Water Splitting Properties of Tin-Doped $WO_3$, Catalysts, 9 (2019) 456. https://doi.org/10.3390/catal9050456
  32. Y. Wang, B. Zhang, J. Liu, Q. Yang, X. Cui, Y. Gao, X. Chuai, F. Liu, P. Sun, X. Liang, Y. Sun, and G. Lu, Au-loaded mesoporous $WO_3$: Preparation and n-butanol sensing performances, Sens. Actuators B - Chem., 236 (2016) 67-76. https://doi.org/10.1016/j.snb.2016.05.097
  33. P. M. Hallam, M. Gomez-Mingot, D. K. Kampouris, and C. E. Banks, Facile synthetic fabrication of iron oxide particles and novel hydrogen superoxide supercapacitors, RSC Adv. 2 (2012) 6672-6679. https://doi.org/10.1039/c2ra01139e
  34. H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang, and G. Zhao, Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework, J. Mole. Catal. A-Chem. 400 (2015) 81-89. https://doi.org/10.1016/j.molcata.2015.02.007
  35. P. C. Bandara, J. Pena-Bahamonde, and D. F. Rodrigues, Redox mechanisms of conversion of Cr(VI) to Cr(III) by graphene oxide-polymer composite, Sci. Rep., 10 (2020) 9237. https://doi.org/10.1038/s41598-020-65534-8
  36. G. R. Conner, Combination analysis of metal oxides using ESCA, AES, and SIMS, J. Vac. Sci. Technol. 15 (1978) 343-347. https://doi.org/10.1116/1.569543
  37. M. Tong, J. Yang, Q. Jin, X. Zhang, J. Gao, and G. Li, Facile preparation of amorphous carbon-coated tungsten trioxide containing oxygen vacancies as photocatalysts for dye degradation, J. Mater. Sci., 54 (2019) 10656-10669. https://doi.org/10.1007/s10853-019-03645-y
  38. Y. Wang, G. Li, K. Wang, and X. Chen, Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel, Appl. Surf. Sci., 505 (2020) 144497. https://doi.org/10.1016/j.apsusc.2019.144497