References
- 원국광, 최태규, 양극산화 기술, 신광문화사 (2003).
- H. Masuda, and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, 268 (1995) 1466-1468. https://doi.org/10.1126/science.268.5216.1466
- F. Keller, M. S. Hunter, and D. L. Robinson, Structural Features of Oxide Coatings on Aluminum, J. Electrochem. Soc., 100 (1953) 411-419. https://doi.org/10.1149/1.2781142
- J. Choi, J. K. Lee, J. H. Lim, and S. J. Kim, Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications, J. Korean Ind. Eng. Chem., 19 (2008) 249-258.
- K. Lee, Principle of Anodic TiO2 Nanotube Formations, 공업화학, 28 (2017) 601-606. https://doi.org/10.14478/ace.2017.1011
- K. Lee, A. Mazare, and P. Schmuki, One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes, Chem. Rev., 114 (2014) 9385-9454. https://doi.org/10.1021/cr500061m
- D. Lee, H. Lee, Y. -T. Kim, K. Lee, and J. Choi, Phase-tuned nanoporous vanadium pentoxide as binder-free cathode for lithium ion battery, Electrochim. Acta, 330 (2020) 135192. https://doi.org/10.1016/j.electacta.2019.135192
-
D. D. Yao, R. A. Rani, A. P. O'Mullane, K. Kalantar-zadeh, and J. Z. Ou, High Performance Electrochromic Devices Based on Anodized Nanoporous
$Nb_2O_5$ , J. Phys. Chem. C, 118 (2014) 476-481. https://doi.org/10.1021/jp410097y - B. Sarma, A. L. Jurovitzki, R. S. Ray, Y. R. Smith, S. K. Mohanty, and M. Misra, Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres, Nanotechnology, 26 (2015) 265401. https://doi.org/10.1088/0957-4484/26/26/265401
- N. Mukherjee, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, Fabrication of nanoporous tungsten oxide by galvanostatic anodization, J. Mater. Res., 18 (2003) 2296-2299. https://doi.org/10.1557/JMR.2003.0321
- S. Matefi-Tempfli, and M. Matefi-Tempfli, Vertically Aligned Nanowires on Flexible Silicone using a Supported Alumina Template prepared by Pulsed Anodization, Adv. Mater., 21 (2009) 4005-4010. https://doi.org/10.1002/adma.200900344
-
P. M. Perillo, and D. F. Rodriguez, The gas sensing properties at room temperature of
$TiO_2$ nanotubes by anodization, Sens. Actuators B - Chem., 171-172 (2012) 639-643. https://doi.org/10.1016/j.snb.2012.05.047 - A. Fujishima, and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38. https://doi.org/10.1038/238037a0
-
H. Yoo, G. Lee, and J. Choi, Binder-free
$SnO_2-TiO_2$ composite anode with high durability for lithium-ion batteries, RSC Adv., 9 (2019) 6589. https://doi.org/10.1039/C8RA10358E - C. Zhong, Z. Han, T. Wang, Q. Wang, Z. Shen, Q. Zhou, J. Wang, S. Zhang, X. Jin, S. Li, P. Wang, D. Gao, Y. Zhou, and H. Zhang, Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting, J. Mater. Chem. A, 8 (2020) 10831-10838. https://doi.org/10.1039/D0TA00876A
- D. Kang, T. W. Kim, S. R. Kubota, and A. C. Cardiel, Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting, Chem. Rev., 115 (2015) 12839-12887. https://doi.org/10.1021/acs.chemrev.5b00498
- A. G. Tamirat, J. Rick, A. A. Dubale, W. -N. Su, B. -J. Hwang, Using hematite for photoelectrochemical water splitting: a review of current progress and challenges, Nanoscale Horiz., 1 (2016) 243-267. https://doi.org/10.1039/C5NH00098J
-
Y. Zhao, J. Li, Y. Ding, and L. Guan, Single-walled carbon nanohorns coated with
$Fe_2O_3$ as a superior anode material for lithium ion batteries, Chem. Commun., 47 (2011), 7416-7418. https://doi.org/10.1039/c1cc12171e -
J. Park, H. Yoo, and J. Choi, 3D ant-nest network of
${\alpha}-Fe_2O_3$ on stainless steel for all-in-one anode for Li-ion battery, J. Power Sources, 431 (2019) 25. https://doi.org/10.1016/j.jpowsour.2019.05.054 - M. Kim, Y. -T. Kim, and J. Choi, Controlled contribution of Ni and Cr cations to stainless steel 304 electrode: Effect of electrochemical oxidation on electrocatalytic properties, Electrochem. Commun., 117 (2020) 106770. https://doi.org/10.1016/j.elecom.2020.106770
- R. R. Rangaraju, K. S. Raja, A. Panday, and M. Misra, An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron, Electrochim. Acta, 55 (2010) 785-793. https://doi.org/10.1016/j.electacta.2009.07.012
-
Y. Gim, M. Seong, Y. -W. Choi, and J. Choi,
$RuO_2$ -doping into high-aspect-ratio anodic$TiO_2$ nanotubes by electrochemical potential shock for water oxidation, Electrochem. Commun., 52 (2015) 37. https://doi.org/10.1016/j.elecom.2015.01.004 -
H. Yoo, K. Oh, G. Lee, and J. Choi,
$RuO_2$ -Doped Anodic$TiO_2$ Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method, J. Electrochem. Soc., 164 (2017) H104. https://doi.org/10.1149/2.1201702jes - R. Kirchgeorg, W. Wei, K. Lee, S. So, and P. Schmuki, Through-hole, self-ordered nanoporous oxide layers on titanium, niobium and titanium-niobium alloys in aqueous and organic nitrate electrolytes, ChemistryOpen, 1 (2012) 21-25. https://doi.org/10.1002/open.201100012
- J. Lee, H. -K. Choi, M. G. Kim, Y. S. Lee, and K. Lee, Formation of porous oxide layer on stainless steel by anodization in hot glycerol electrolyte, 공업화학, 31 (2020) 215-219. https://doi.org/10.14478/ace.2020.1015
- K. Kure, Y. Konno, E. Tsuji, P. Skeldon, G. E. Thompson, and H. Habazaki, Formation of self-organized nanoporous anodic films on Type 304 stainless steel, Electrochem. Commun., 21 (2012) 1-4. https://doi.org/10.1016/j.elecom.2012.05.003
-
E. Song, Y.-T. Kim, and J. Choi, Anion additives in rapid breakdown anodization for nonmetal-doped
$TiO_2$ nanotube powders, Electrochemistry Communications, 109 (2019) 106610. https://doi.org/10.1016/j.elecom.2019.106610 -
H. Yoo, K. Oh, Y. -C. Nah, J. Choi, and K. Lee, Single-Step Anodization for the Formation of
$WO_3$ -Doped$TiO_2$ Nanotubes Toward Enhanced Electrochromic Performance, ChemElectroChem, 5 (2018) 3379. https://doi.org/10.1002/celc.201800981 -
H. Yoo, Y. -W. Choi, and J. Choi,
$TiO_2$ nanotubes with a doping of ruthenium oxide by single-step anodization for water oxidation applications, ChemCatChem, 7 (2015) 643. https://doi.org/10.1002/cctc.201402787 - E. S. Ilton, C. O. Moses, and D. R. Veblen, Using X-ray photoelectron spectroscopy to discriminate among different sorption sites of micas: with implications for heterogeneous reduction of chromate at the mica-water interface, Gechim. Cosmochim. Acta, 64 (2000) 1437-1450. https://doi.org/10.1016/S0016-7037(99)00372-5
-
S. Kalanur, Structural, Optical, Band Edge and Enhanced Photoelectrochemical Water Splitting Properties of Tin-Doped
$WO_3$ , Catalysts, 9 (2019) 456. https://doi.org/10.3390/catal9050456 -
Y. Wang, B. Zhang, J. Liu, Q. Yang, X. Cui, Y. Gao, X. Chuai, F. Liu, P. Sun, X. Liang, Y. Sun, and G. Lu, Au-loaded mesoporous
$WO_3$ : Preparation and n-butanol sensing performances, Sens. Actuators B - Chem., 236 (2016) 67-76. https://doi.org/10.1016/j.snb.2016.05.097 - P. M. Hallam, M. Gomez-Mingot, D. K. Kampouris, and C. E. Banks, Facile synthetic fabrication of iron oxide particles and novel hydrogen superoxide supercapacitors, RSC Adv. 2 (2012) 6672-6679. https://doi.org/10.1039/c2ra01139e
- H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang, and G. Zhao, Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework, J. Mole. Catal. A-Chem. 400 (2015) 81-89. https://doi.org/10.1016/j.molcata.2015.02.007
- P. C. Bandara, J. Pena-Bahamonde, and D. F. Rodrigues, Redox mechanisms of conversion of Cr(VI) to Cr(III) by graphene oxide-polymer composite, Sci. Rep., 10 (2020) 9237. https://doi.org/10.1038/s41598-020-65534-8
- G. R. Conner, Combination analysis of metal oxides using ESCA, AES, and SIMS, J. Vac. Sci. Technol. 15 (1978) 343-347. https://doi.org/10.1116/1.569543
- M. Tong, J. Yang, Q. Jin, X. Zhang, J. Gao, and G. Li, Facile preparation of amorphous carbon-coated tungsten trioxide containing oxygen vacancies as photocatalysts for dye degradation, J. Mater. Sci., 54 (2019) 10656-10669. https://doi.org/10.1007/s10853-019-03645-y
- Y. Wang, G. Li, K. Wang, and X. Chen, Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel, Appl. Surf. Sci., 505 (2020) 144497. https://doi.org/10.1016/j.apsusc.2019.144497