Browse > Article
http://dx.doi.org/10.12989/aer.2013.2.3.167

Formation of surface mediated iron colloids during U(VI) and nZVI interaction  

Shin, Youngho (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
Bae, Sungjun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
Lee, Woojin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Advances in environmental research / v.2, no.3, 2013 , pp. 167-177 More about this Journal
Abstract
We investigated that removal of aqueous U(VI) by nano-sized Zero Valent Iron (nZVI) and Fe(II) bearing minerals (controls) in this study. Iron particles showed different U(VI) removal efficiencies (Mackinawite: 99%, green rust: 95%, nZVI: 91%, magnetite: 87%, pyrite: 59%) due to their different PZC (Point of Zero Charge) values and surface areas. In addition, noticeable amount of surface Fe(II) (181 ${\mu}M$) was released from nZVI suspension in 6 h and it increased to 384 ${\mu}M$ in the presence of U(VI) due to ion-exchange of U(VI) with Fe(II) on nZVI surface. Analysis of Laser-Induced Breakdown Detection (LIBD) showed that breakdown probabilities in both filtrates by 20 and 200 nm sizes was almost 24% in nZVI suspension with U(VI), while 1% of the probabilities were observed in nZVI suspension without U(VI). It indicated that Fe(II) colloids in the range under 20 nm were generated during the interaction of U(VI) and nZVI. Our results suggest that Fe(II) colloids generated via ion-exchange process should be carefully concerned during long-term remediation site contaminated by U(VI) because U could be transported to remote area through the adsorption on Fe(II) colloids.
Keywords
uranium; nZVI; ion- exchange; Fe(II) colloids; LIBD;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alonso, U., Missana, T., Geckeis, H., Garcia-Gutierrez, M., Turrero, M., Mori, R., Schafer, T., Patelli, A. and Rigato, V. (2006), "Role of inorganic colloids generated in a high-level deep geological repository in the migration of radionuclides: Open questions", J. Iberian Geol., 32(1), 79-94.
2 Amir, A. and Lee, W. (2011), "Enhanced reductive dechlorination of tetrachloroethene by nano-sized zerovalent iron with vitamin B12", Chem. Eng. J., 170(2-3), 492-497.   DOI   ScienceOn
3 Amir, A. and Lee, W. (2012), "Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin (III) by nano-mackinawite", J. Hazard. Mater., 235-236, 359-366.   DOI   ScienceOn
4 Bae, S. and Lee, W. (2010), "Inhibition of nZVI reactivity by magnetite during the reductive degradation of 1,1,1-TCA in nZVI/magnetite suspension", Appl. Catal. B-Environ., 96(1-2), 10-17.   DOI   ScienceOn
5 Bargar, J., Reitmeyer, R., Lenhart, J. and Davis, J. (2000), "Characterization of U(VI)-carbonato complexes on hematite: EXAFS and electrophoretic mobility measurements", Geochim. Cosmochim. Ac., 64(16), 2737-2749.   DOI   ScienceOn
6 Barnett, M., Jardine, P. and Brooks, S. (2002), "U(VI) adsorption to heterogeneous subsurface media: Application of a surface complexation model", Environ. Sci. Technol., 36(5), 937-942.   DOI   ScienceOn
7 Charlet, L., Liger, E. and Gerasimo, P. (1998), "Decontamination of TCE- and U-rich waters by granular iron: Role of sorbed Fe(II)", J. Environ. Eng., 124(1), 25-30.   DOI   ScienceOn
8 Cho, C., Bae, S. and Lee, W. (2012), "Enhanced degradation of TNT and RDX by bio-reduced iron bearing soil minerals", Adv. Environ. Res., Int. J., 1(1), 1-14.   DOI   ScienceOn
9 Choi, K. and Lee, W. (2012), "Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II)", J. Hazard. Mater., 211-212(15), 146-153.   DOI   ScienceOn
10 Descostes, M., Schlegel, M., Eglizaud, N., Descamps, F., Miserque, F. and Simoni, E. (2010), "Uptake of uranium and trace elements in pyrite (FeS2) suspensions", Geochim. Cosmochim. Ac., 74(5), 1551-1562.   DOI   ScienceOn
11 Dickinson, M. and Scott, T. (2010), "The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent", J. Hazard. Mater., 178(1-3), 171-179.   DOI   ScienceOn
12 Elsner, M., Schwarzenbach, R. and Haderlein, S. (2004), "Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants", Environ. Sci. Technol., 38(3), 799-807.   DOI   ScienceOn
13 Fiedor, J.N., Bostick, W.D., Jarabek, R.J. and Farrell, J. (1998), "Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy", J. Environ. Sci. Technol., 32(10), 1466-1473.   DOI   ScienceOn
14 Grenthe, I., Fuger, J., Konings, R., Lemire, R., Muller, A., Nguyen-trung cregu, C., Wanner, H. and Forest, I. (2003), Chemical Thermodynamics of Uranium, OECD publication, Paris, France.
15 Gu, B., Liang, L., Dickey, M., Yin, X. and Dai, S. (1998), "Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation", Environ. Sci. Technol., 39(12), 3366-3373.
16 Han, D., Batchelor, B. and Abdel-Wahab, A. (2012), "Sorption of selenium(IV) and selenium(VI) onto synthetic pyrite (FeS2): Spectroscopic and microscopic analyses", J. Colloid. Interf. Sci., 368(1), 496-504.   DOI   ScienceOn
17 He, Y. and Traina, S. (2005), "Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation", Environ. Sci. Technol., 39(12), 4499-4504.   DOI   ScienceOn
18 Hua, B. and Deng, B. (2008), "Reductive immobilization of uranium(VI) by amorphous iron sulfide", Environ. Sci. Technol., 42(23), 8703-8708.   DOI   ScienceOn
19 Kanel, S., Manning, B., Charlet, L. and Choi, H. (2005), "Removal of arsenic(III) from groundwater by nanoscale zero-valent iron", Environ. Sci. Technol., 39(5), 1291-1298.   DOI   ScienceOn
20 Hyun, S., Davis, J., Sun, K., and Hayes, K. (2012), "Uranium(VI) reduction by iron(II) monosulfide mackinawite", Environ. Sci. Technol., 46(6), 3369-3376.   DOI
21 Katsoyiannis, I., Althoff, H., Bartel, H. and Jekel, M. (2006), "The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides", Water Res., 40(19), 3646-3652.   DOI   ScienceOn
22 Kim, E. and Batchelor, B. (2009), "Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite", Environ. Sci. Technol., 43(8), 2899-2904.   DOI   ScienceOn
23 Kirana, Y.P. and Yun, J. (2011), "Formation and stability of aluminosilicate colloids by coprecipitation", Master's Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
24 Li, Z. and Zhang, W. (2006), "Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration", Langmuir., 22(10), 4638-4642.   DOI   ScienceOn
25 Liger, E., Charlet L. and Van Cappellen, P. (1999), "Surface catalysis of uranium (VI) reduction by iron (II)", Geochim. Cosmochim. Acta., 63(19-20), 2939-2955.   DOI   ScienceOn
26 Martin, J., Herzing, A., Yan, W., Li, X., Koel, B., Kiely, C. and Zhang, W. (2008), "Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles", Langmuir., 24(8), 4329-4334.   DOI   ScienceOn
27 Matta, R., Hanna, K., Kone, T. and Chiron, S. (2008), "Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH", Chem. Eng. J., 144(3), 453-458.   DOI   ScienceOn
28 Moulin, C., Laszak, I., Moulin V. and Tondre, C. (1998), "Time-resolved laser induced fluorescence as a unique tool for low-level uranium speciation", Appl., Spectrosc., 52(4), 528-535.   DOI   ScienceOn
29 Missana, T., Garcia-Gutierrez, M. and Fernndez, V. (2003), "Uranium(VI) sorption on colloidal magnetite under anoxic environment: Experimental study and surface complexation modeling", Geochim. Cosmochim. Ac., 67(14), 2543-2550.   DOI   ScienceOn
30 Missana, T., Maffiotte, C. and Garcia-Gutierrez, M. (2003), "Surface reaction kinetics between nanocrystalline magnetite and uranyl", J. Colloid Interf. Sci., 261(1), 154-160.   DOI   ScienceOn
31 Noubactep, C., Meinrath, G., Dietrich, P. and Merkel, B. (2003), "Mitigating uranium in groundwater: Prospects and limitations", Environ. Sci. Technol., 37(18), 4304-4308.   DOI   ScienceOn
32 Noubactep, C., Schoner, A. and Meinrath, G. (2006), "Mechanism of uranium removal from the aqueous solution by elemental iron", J. Hazard. Mater., 32(2-3), 202-212.
33 Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F, Merkulov, A., Clark, S.B., Tkachev, V.V. and Myasoedov, B.F. (2006), "Colloid transport of plutonium in the far-field of the Mayak production association, Russia", Science, 314(5799), 638-641.   DOI   ScienceOn
34 O'Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R. and Kemner, K.M. (2003), "Reduction of uranium (VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of $UO_{2}$ nanoparticles", Environ. Sci. Technol., 37(4), 721-727.   DOI   ScienceOn
35 Riba, $UO_{2}$ Scott, T.B., Ragnarsdottir, V. and Allen, G.C. (2008), "Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles", Geochim. Cosmochim. Ac., 72(16), 4047-4057.   DOI   ScienceOn
36 Rovira, M., Aamrani, S., Duro, L., Gimenez, J., Pablo, J. and Bruno, J. (2007), "Interaction of uranium with in situ anoxically generated magnetite on steel", J. Hazard. Mater., 147(3), 726-731.   DOI   ScienceOn
37 Stookey, L.L. (1970), "Ferrozine - A new spectrophotometric reagent for iron", Anal. Chem., 42(7), 779-781.   DOI
38 Scott, T.B., Allen, G.C., Heard, P.J. and Randell, M.G. (2005), "Reduction of U(VI) to U(IV) on the surface of magnetite", Geochim. Cosmochim. Ac., 69(24), 5639-5646.   DOI   ScienceOn
39 Sparks, D. (1995), Environmental Soil Chemistry, Academic Press, San Diego, NY, USA.
40 Srinivasan, R., Lin, R., Spicer, R.L. and Davis, B.H. (1996), "Structural features in the formation of the green rust intermediate and $\gamma$-FeOOH", Colloid. Surface. A., 113(1-2), 97-105.   DOI   ScienceOn
41 Sun, Y., Li, X., Cao, J., Zhang, W. and Wang, H. (2006), "Characterization of zero-valent iron nanoparticles", Adv. Colloid. Interfac., 120(1-3), 47-56   DOI   ScienceOn
42 Ulrich, K., Rossberg, A., Foerstendorf, H., Zanker, H. and Scheinost, A. (2006), "Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids", Geochim. Cosmochim. Ac., 70(22), 5469-5487.   DOI   ScienceOn
43 Villalobos, M., Trotz, M. and Leckie, J. (2001), "Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite", Environ. Sci. Technol., 35(19), 3849-3856.   DOI   ScienceOn
44 Wang, C.B. and Zhang, W.X. (1997), "Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs", Environ. Sci. Technol., 31(7), 2154-2156.   DOI   ScienceOn
45 Wazne, M., Korfiatis, G.P. and Meng, X. (2003), "Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide", Environ. Sci. Technol., 37(16), 3619-3624.   DOI   ScienceOn
46 Wersin, P., Hochella Jr, M.F., Persson, P., Redden, G., Leckie, J.O. and Harris, D.W. (1994), "Interaction between aqueous uranium (VI) and sulfide minerals: spectroscopy evidence for sorption and reduction", Geochim. Cosmochim. Acta ., 58(3), 2829-2843.   DOI   ScienceOn
47 Yoon, R., Salman, T. and Donnay, G. (1978), "Predicting points of zero charge of oxides and hydroxides", J. Colloid. Interf. Sci., 70(3), 483-493.
48 Worthers, M., Charlet, L., Linde, P., Rickard, D. and Weijden, C. (2005), "Surface chemistry of disordered mackinawite (FeS)", Geochim. Cosmochim. Ac., 69(14), 3469-3481.   DOI   ScienceOn
49 Yan, W., Herzing, A., Kiely, C. and Zhang, W. (2010), "Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic specie sin water", J. Contam. Hydrol., 118(3-4), 96-104.   DOI   ScienceOn
50 Yanina, S. and Rosso, K. (2008), "Linked reactivity at mineral-water interfaces through bulk crystal conduction", Science, 320(5873), 218-222.   DOI   ScienceOn