DOI QR코드

DOI QR Code

The Influence of H+ and Cl- Ions on the Corrosion Inhibitive Effect of Poly(para-aminophenol) for Iron in Hydrochloric acid

  • Manivel, P. (Department of Chemistry, Thanthai Periyar Government Institute of Technology)
  • Received : 2017.06.28
  • Accepted : 2017.08.21
  • Published : 2017.08.31

Abstract

Polymer amines are found to show distinct corrosion inhibition effects in acidic media. The functional groups of organic compounds have a wide role in the physical and chemical properties, for the inhibition efficiency with respect to steric factors, aromaticity, and electron density. The influence of $H^+$ ions and $Cl^-$ ions on the corrosion inhibitive effect of poly(p-aminophenol) for iron in hydrochloric acid was studied using electrochemical methods such as impedance, linear polarization, and Tafel polarization techniques. The experiments were conducted with and without the inhibitor, poly(p-aminophenol). The concentration range of $H^+$ ions and $Cl^-$ ions are from 1 M to 0.05 M and 1 M to 0.1 M, respectively. With the inhibitor poly(p-aminophenol), this study shows that inhibition efficiency decreases with the reduction of $H^+$ ion and $Cl^-$ ion concentrations in aqueous solution. Further, it reveals that the adsorption of an inhibitor on the surface of iron is dependent on the concentrations of $H^+$ and $Cl^-$ ions in the solution and the adsorption of inhibitor on the iron surface through the cationic form of amine.

Keywords

References

  1. G. Troch-Nagels, R. Winand, A. Weymeersch, and L. Renard, J. Appl. Eletrochem., 22, 756 (1992). https://doi.org/10.1007/BF01027506
  2. D. W. Hatchett, M. Josowicz, and J. Janata, J. Electrochem. Soc., 146, 4535 (1999). https://doi.org/10.1149/1.1392670
  3. K. F. Khaled and N. Hackerman, Mater. Chem. phys., 82, 949 (2003). https://doi.org/10.1016/j.matchemphys.2003.08.007
  4. H. Luo, Y. C. Guan, and K. N. Han, Corrosion, 54, 721 (1996).
  5. P. Manivel and G. Venkatachari, J. Met. Mater. Sci., 46, 173 (2004).
  6. P. Manivel and G. Venkatachari, J. Met. Mater. Sci., 46, 263 (2004).
  7. P. Manivel and G. Venkatachari, Corros. Sci. Tech., 4, 51 (2005).
  8. E. Mc Cafferty and N. Hackerman, J. Electrochem. Soc., 119, 999 (1972). https://doi.org/10.1149/1.2404426
  9. K. F. Khaled and N. Hackerman, Mater. Chem. Phys., 82, 949 (2003). https://doi.org/10.1016/j.matchemphys.2003.08.007
  10. S. Rangamani, S. Muralidharan, M. Ganesan, and S. V. K. Iyer, Indian J. Chem. Techn., 1, 168 (1994).
  11. F. Bentiss, M. Lagrenee, M. Traisnel, and J. C. Hornez, Corros. Sci., 41, 789 (1999). https://doi.org/10.1016/S0010-938X(98)00153-X
  12. G. Thenmozhi, P. Arockiasamy, and R. Jaya Santhi, Int. J. Electrochem., Article ID 961617 (2014).
  13. K. S. Rajagopalan and G. Venkatachari, Corrosion, 36, 320 (1980). https://doi.org/10.5006/0010-9312-36.6.320
  14. D. W. Hatchett, M. Josowicz, and J. Janata, J. Electrochem. Soc., 146, 4535 (1999). https://doi.org/10.1149/1.1392670
  15. C. A. Mann, Trans. Electrochem., 69, 105 ( 1936). https://doi.org/10.1149/1.3498145
  16. B. Ramesh Babu and R. Holze, Br. Corrs. J., 35, 204 (2000). https://doi.org/10.1179/000705900101501254
  17. R. C. Ayers and N. Hackerman, J. Electrochem. Soc., 119, 146 (1972). https://doi.org/10.1149/1.2404150
  18. Z. A. Iofa and G. N. Tomasov, Zh. Fiz. Khim., 34, 1036 (1960).
  19. P. Manivel and G. Venkatachari, J. Mater. Sci. Technol., 22, 301 (2006). https://doi.org/10.1179/174328406X86155
  20. S. Rangamani and S. V. K. Iyer, J. Appl. Electrochem., 24, 355 (1994).
  21. Y. Wei, F. K. Hsuch, and G. W. Tang, Macromolecules, 27, 518 (1994). https://doi.org/10.1021/ma00080a028
  22. P. Priori and P. Rannoa, Prog. Polym. Sci., 27, 135 (2002). https://doi.org/10.1016/S0079-6700(01)00043-0