• Title/Summary/Keyword: Iron oxides

Search Result 260, Processing Time 0.03 seconds

High-temperature Corrosion of CrAlSiN Films in Ar/1%SO2 Gas

  • Lee, Dong Bok;Xiao, Xiao;Hahn, Junhee;Son, Sewon;Yuke, Shi
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.246-250
    • /
    • 2019
  • Nano-multilayered $Cr_{25.2}Al_{19.5}Si_{4.7}N_{50.5}$ films were deposited on the steel substrate by cathodic arc plasma deposition. They were corroded at $900^{\circ}C$ in $Ar/1%SO_2$ gas in order to study their corrosion behavior in sulfidizing/oxidizing environments. Despite the presence of sulfur in the gaseous environment, the corrosion was governed by oxidation, leading to formation of protective oxides such as $Cr_2O_3$ and ${\alpha}-Al_2O_3$, where Si was dissolved. Iron diffused outward from the substrate to the film surface, and oxidized to $Fe_2O_3$ and $Fe_3O_4$. The films were corrosion-resistant up to 150 h owing to the formation of thin ($Cr_2O_3$ and/or ${\alpha}-Al_2O_3$)-rich oxide layers. However, they failed when corroded at $900^{\circ}C$ for 300 h, resulting in the formation of layered oxide scales due to not only outward diffusion of Cr, Al, Si, Fe and N, but also inward movement of sulfur and oxygen.

Electromagnetic Wave Absorber Sheet for 940 MHz Dedicated Short Range Communication Frequency Bands Using Fe Based Alloy Soft Magnetic Metal Powder (Fe-계 연자성 금속분말을 이용한 940 MHz 단거리 전용 통신 (DSRC) 대역 전파 흡수체)

  • Kim, ByeongCheol;Seo, ManCheol;Yun, Yeochun
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.363-370
    • /
    • 2019
  • The recent development of information and communication technologies brings new changes to automobile traffic systems. The most typical example is the advancement of dedicated short range communication(DSRC). DSRC mainly consists of an intelligent transportation system(ITS), an electronic toll collection system(ETCS) and an advanced traveler information system(ATIS). These wireless communications often cause unnecessary electromagnetic waves, and these electromagnetic waves, in turn, cause frequent system malfunction. To solve this problem, an absorber of electromagnetic waves is suggested. In this research, various materials, such as powdered metal and iron oxides, are used to test the possibility for an effective absorption of the unnecessary electromagnetic waves. The various metal powders are made into a thin sheet form by compositing through processing. The electromagnetic characteristics(complex permittivity, complex permeability) of the fabricated sheet are measured. As a result, we achieve -6.5 dB at 940 MHz(77.6 % absorption rate) with a 1.0 mm-thickness electromagnet wave absorber, and -9.5 dB at 940 MHz(88.8 % absorption rate) with a 2.0 mm-thickness absorber.

Effect of Redox Processes and Solubility Equilibria on the Behavior of Dissolved Iron and Manganese in Groundwater from a Riverine Alluvial Aquifer (만경강 하천변 충적 지하수의 용존 Fe와 Mn 거동에 대한 산화-환원 과정과 용해 평형의 효과)

  • Choi, Beom-Kyu;Koh, Dong-Chan;Ha, Kyoo-Chul;Cheon, Su-Hyun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.29-45
    • /
    • 2007
  • Biogeochemical characteristics involving redox processes in groundwater from a riverine alluvial aquifer was investigated using multi-level monitoring wells (up to 30m in depth). Anaerobic conditions were predominant and high Fe ($14{\sim}37mg/L$) and Mn ($1{\sim}4mg/L$) concentrations were observed at 10 to 20 m in depth. Below 20 m depth, dissolved sulfide was detected. Presumably, these high Fe and Mn concentrations were derived from the reduction of Fe- and Mn-oxides because dissolved oxygen and nitrate were nearly absent and Fe and Mn contents were considerable in the sediments. The depth range of high Mn concentration is wider than that of high Fe concentration. Dissolved organics may be derived from the upper layers. Sulfate reduction is more active than Fe and Mn reduction below 20 m in depth. Disparity of calculated redox potential from the various redox couples indicates that redox states are in disequilibrium condition in groundwater. Carbonate minerals such as siderite and rhodochrosite may control the dissolved concentrations of Fe(II) and Mn(II), and iron sulfide minerals control for Fe(II) where sulfide is detected because these minerals are near saturation from the calculation of solubility equilibria.

Removal of Soluble Mn(II) using Multifunctional Sand Coated with both Fe- and Mn-oxides (철과 망간이 동시에 코팅된 다기능성 모래를 이용한 용존 Mn(II) 제거)

  • Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.193-200
    • /
    • 2010
  • This study evaluated treatability of soluble Mn(II) using multifunctional sand media simultaneously coated with iron and manganese. In the preparation of IMCS(Iron and Manganese Coated Sand), 0.05 M Mn(II) solution and Fe(III) solution was mixed with sand at pH 7. The mineral type of IMCS was identified as the mixture of ${\gamma}-MnO_2$, goethite and magnetite($F_{e3}O_4$). The contents of Mn and Fe coated onto sand were 826 and 1676 mg/kg, respectively. The $pH_{pzc}$ of IMCS was measured as 6.40. The removal of soluble Mn(II) using IMCS and oxidants such as NaOCl and $KMnO_4$ was investigated with variation of the solution pH, reaction time and Mn(II) concentration in a batch test. The removal of Mn(II) on IMCS was 34% at pH 7.4 and the removals of Mn(II) on IMCS in the presence of NaOCl(13.6 mg/L) at pH 7 and $KMnO_4$(4.8 mg/L) at pH 7.6 were 96% and 89%, respectively. The removal of Mn(II) using IMCS and oxidants followed a typical cationic type, showing a gradual increase of removal as the solution pH increased. The removal of Mn(II) was rapid in the first 6 hrs and then a constant removal was observed. The maximum removed amount of Mn(II) on IMCS-alone and IMCS in the presence of oxidants such as NaOCl(13.6 mg/L) and $KMnO_4$(4.8mg/L) were 833.3, 1428.6 and 1666.7 mg/kg, respectively. Mn(II) removal onto the IMCS in the presence of oxidants was well described by second-order reaction and Langmuir isotherm expression.

Geochemistry and Mineralogical Characteristics of Precipitate formed at Some Mineral Water Springs in Gyeongbuk Province, Korea (경북지역 주요 약수의 지화학과 침전물의 광물학적 특성)

  • Choo, Chang-Oh;Lee, Jin-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2009
  • Mineralogical characteristics of secondary precipitate formed at some mineral water springs in Gyeongbuk Province, Korea were studied in relation to water chemistry. The chemical water types of mineral water springs are mostly classified as $Ca-HCO_3$ type, but $Na(Ca)-HCO_3$ and $Ca-SO_4$ types are also recognized. Ca, Fe, and $HCO_3\;^-$ are the most abundant components in the water. The pH values of most springs lie in 5.76${\sim}$6.81, except Hwangsu spring having pH 2.8. Saturation indices show that all springs are supersaturated with respect to iron minerals and oxyhydroxides such as hematite and goethite. The result of particle size analysis shows that the precipitate is composed of the composite with various sizes, indicating the presence of iron minerals susceptible to a phase transition at varying water chemistry or the mixtures consisting of various mineral species. The particle size of the reddish precipitate is larger than that of the yellow brown precipitate. Based on XRD and SEM analyses, the precipitate is mostly composed of ferrihydrite (two-line type), goethite, schwertmannite, and calcite, with lesser silicates and manganese minerals. The most abundant mineral fanned at springs is ferrihydrite whose crystals are $0.1{\sim}2\;{\mu}m$ with an average of $0.5\;{\mu}m$ in size, characterized by a spherical form. It should be interestingly noted that schwertmannite forms at Hwangsu spring whose pH is very low. At Shinchon spring, Gallionella ferruginea, one of the iron bacteria, is commonly found as an indicator of the important microbial activity ascribed to the formation of iron minerals because very fine iron oxides with a spherical form are closely distributed on surfaces of the bacteria. A genetic relationship between the water chemistry and the formation of the secondary precipitate from mineral water springs was discussed.

Removal Characteristic of Arsenic by Sand Media Coated with both Iron-oxide and Manganese-oxide (산화철 및 산화망간이 동시에 코팅된 모래 매질을 이용한 비소오염 제거특성 연구)

  • Kim, Byeong-Kwon;Min, Sang-Yoon;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.473-482
    • /
    • 2009
  • In this study, iron and manganese coated sand (IMCS) was prepared by mixing Joomoonjin sand with solutions having different molar ratio of manganese ($Mn^{2+}$) and iron ($Fe^{3+}$). Mineral type of IMCS was analyzed by X-ray diffraction spectroscopy. Removal efficiency of arsenic through As(III) oxidation and As(V) adsorption by IMCS having different ratio of Mn/Fe was evaluated. The coated amount of total Mn and Fe on all IMCS samples was less than that on sand coated with iron-oxide alone (ICS) or manganese-oxide alone (MCS). The mineral type of the manganese oxide on MCS and iron oxides on ICS were identified as ${\gamma}-MnO_2$ and mixture of goethite and magnetite, respectively. The same mineral type was appeared on IMCS. Removed amount As(V) by IMCS was greatly affected by the content of Fe rather than by the content of Mn. Adsorption of As(V) by IMCS was little affected by the presence of monovalent and divalent electrolytes. However a greatly reduced As(V) adsorption as observed in the presence of trivalent electrolyte such as $PO_4\;^{3-}$. As(III) oxidation efficiency by MCS in the presence of NaCl or $NaNO_3$ was two times greater than that in the presence of $PO_4\;^{3-}$. Meanwhile a greater As(III) oxidation efficiency was observed by IMCS in the presence of $PO_4\;^{3-}$. This was explained by the competitive adsorption between phosphate and arsenate on the surface of IMCS.

The Influence of organic Matter on Soil Aggregation in Forest Soils (삼림토양내(森林土壤內)의 유기물함량(有機物含量)이 토양입단화(土壤粒團化)에 미치는 영향(影響))

  • Park, Gwan Soo;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.367-375
    • /
    • 1990
  • In order to determine the effects of bedrock, organic matter, calcium and iron oxide on the soil aggregation, this research has performed with soils from bedrock regions of Limestone, Granite and Granite gneiss. This research was also to estimate how organic matter, calcium and iron oxide influence on soil aggregation under different forest conditions in various bedrock regions. And it also had a purpose to rate physical factors relevant to soil aggregation, their characteristics and aggregate diameter which closely relates to stabilities in the process of soil erosion. The following conclusions have been drawn in response to the overall research objectives. The rates of the soil aggregation on different bedrock regions were 21% in Limestone bedrock, 19.8% in Granite bedrock and 9.9% in Granite gneiss bedrock. A main factor in soil aggregation was the orgainc matter content in soils and the rate of soil aggregation increased in the constant proportion with the organic matter content. The relation could be formulated into Y=4.31X-4.37(Y : aggregation ratio X : organic matter content). The soil aggregation ratio under the deciduous forests eras higher than that under the coniferous forests. It was considered that this resulted from differences in organic matter content. Soil aggregates with larger diameter than 0.5mm were found more in Limestone bedrock than other smaller size soil aggregates of 0.25mm diameter were more distributed in Granite gneiss bedrock. Granite bedrock region had normal distribution in soil aggregate sizes with the highest frequency of 0.5mm diameter. Calcium and iron oxides had only partial influences on the soil aggregation in some specific conditions. But in Limestone bedrock region calcium influenced on the soil aggregation with the organic matter content.

  • PDF

Development of Pearl Pigment which Has the Similar Properties of Snow in Make-up Products (눈의 물리적인 특성과 유사한 펄 원료 개발 및 이를 이용한 화장료 조성물 제조방법)

  • Lee, Yun-Ha;Kim, Kyung-Nam;Sunwoo, Gun;Rick, Norbert;Reichnek, Antje;Choi, Yeong-Jin;Ko, Seung-Yong;Han, Sang-Hun;Kang, Hak-Hee;Lee, Ok-Sub
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-173
    • /
    • 2008
  • Pearlescent pigments have been widely used in cosmetic applications. Up to date; the most widely used pearl effect pigment is the mica-based pigment, which uses natural mica as the substrate that is in turn coated with metal of oxide interference layer. However, when natural mica is employed as a base material the final product often has a yellowish color, mainly due to the fact that natural mica contains low levels of iron as an impurity[1,2]. This study was focused on developing a pearl pigment which might have a similar sparkling effect as snow. This effect was found to be due to its structure and purity, and this concept was also applied to development of our pearl pigments. More specifically, this invented pearl effect pigments are the mixture of glass-flake and glass-flake coated metal oxides and present the optical properties of snow matrix such as refractive index and particle size, unlike only the glass-flake or glass-flake coated metal oxides to be applied in. Using base material having similar physical properties (refractive index and particle size) as snow matrix as platelet for pearl effect pigments, these invented pigments present a three-dimensional glittering effect of the snow matrix. With this invented figments an applied; we achieved the beauty of snow crystal from makeup products containing these pigments.

Effects of Soil Types on Methane Gas Emission in Paddy During Rice Cultivation (논토양 종류가 메탄배출에 미치는 영향)

  • Seo, Young-Jin;Park, Jun-Hong;Kim, Chan-Yong;Kim, Jong-Su;Cho, Doo-Hyun;Choi, Seong-Yong;Park, So-Deuk;Jung, Hyun-Cheol;Lee, Deog-Bae;Kim, Kwang-Seop;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1220-1225
    • /
    • 2011
  • Anaerobic decomposition of organic materials in flooded rice fields produces methane ($CH_4$) gas, which escapes to the atmosphere primarily by transport through organs of the rice plants such as arenchyma etc., Although the annual amount of methane emitted from a given area is influenced by cultivation periods of rice and organic/inorganic amendments etc., soil type also affects methane emission from paddy soil during a rice cultivation. A field experiment was conducted to evaluate effects of soil type on $CH_4$ emission in two paddy soils. One is a red-yellow soil classified as a Hwadong series (fine, mixed, mesic family of Aquic Hapludalfs), and the other is a gley soil classified as a Shinheung series (fine loamy, mixed, nonacid, mesic family of Aeric Fluvaquentic Endoaquepts). During a flooded periods, redox potentials of red-yellow soil were significantly higher than gley soil. $CH_4$ emission in red-yellow soil ($0.21kg\;ha^{-1}\;day^{-1}$) was lower than that in gley soil ($5.25kg\;ha^{-1}\;day^{-1}$). In the condition of different soil types, $CH_4$ emissions were mainly influenced by the content of total free metal oxides in paddy soil. The results strongly imply that iron- or manganese-oxides of well ordered crystalline forms in soil such as goethite and hematite influenced on a $CH_4$ emission, which is crucial role as a $CH_4$ oxidizers in paddy soil during a rice cultivation.

Study on Characteristics of Change of Urea and Biuret Content by Temperature Variation in Urea Solution (요소수(Urea solution)의 온도변화에 따른 요소 및 뷰렛함량 변화 특성 연구)

  • Doe, Jin-woo;Park, Tae-sung;Lee, Yu-rim;Yim, Eui-soon;Lee, Joung-min;Kang, Hyung-kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1307-1319
    • /
    • 2018
  • As interests in the air pollution increases, many kinds of researches are underway on the reduction of air pollutants. The removal of nitrogen oxides from the emission gas of diesel vehicles using urea solution has shown a great effect. The quality of urea solution is strictly defined by domestic law, but the increase of impurities in urea solution reduces the effect of reducing nitrogen oxides. Therefore, in this study, the change of physical properties of urea solution was analyzed after heating the urea solution for a certain temperature and time. Also, the changes of physical properties of urea solution were analyzed according to kinds of storage container and temperature for storing the urea solution. After heating the urea solution for a certain period of time, the biuret content in urea solution increased and the content of urea decreased. As the urea content decreased, both density and refractive index decreased. In the storage stability test carried out at a constant temperature with iron and PET containers, no change in physical properties was observed.