• 제목/요약/키워드: Iron electrode

검색결과 93건 처리시간 0.035초

에어로졸 분무열분해법을 이용한 코발트페라이트-그래핀 복합체 분말 제조 및 슈퍼커패시터 응용 (Preparation of CoFe2O4-Graphene Composites using Aerosol Spray Pyrolysis for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.33-40
    • /
    • 2017
  • Cobalt-iron oxides have emerged as alternative electrode materials for supercapacitors because they have advantages of low cost, natural abundance, and environmental friendliness. Graphene loaded with cobalt ferrite ($CoFe_2O_4$) nanoparticles can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with $CoFe_2O_4$ nanoparticles. The $CoFe_2O_4$-graphene composites were synthesized from a colloidal mixture of GO, iron (III) chloride hexahydrate ($FeCl_3{\cdot}6H_2O$) and cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) respectively, via one step aerosol spray pyrolysis. Size of $CoFe_2O_4$ nanoparticles was ranged from 5 nm to 10 nm when loaded onto 500 nm CGR. The electrochemical performance of the $CoFe_2O_4$-graphene composites was examined. The $CoFe_2O_4$-graphene composite electrode showed the specific capacitance of $253F\;g^{-1}$.

Pd 첨가가 금속수소화물 전극 특성에 미치는 영향 (Effects of Pd Addition on Electrode properties of Metal Hydride)

  • 최전;이경구
    • 한국수소및신에너지학회논문집
    • /
    • 제10권2호
    • /
    • pp.141-149
    • /
    • 1999
  • 현재 수소저장 합금을 이용하여 2차전지의 음극으로 개발되고 있는 $AB_5$ type의 $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ 조성의 수소저장합금과 $AB_2$ type의 $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}$ 조성의 수소저장합금에 Pd를 0, 0.5, 1, 2 wt% 첨가한 조성을 진공 중에서 arc 용해를 하였다. 용해된 합금의 조직과 결정구조를 SEM, XRD로 조사하였다. Pd 가 첨가되었음에도 조직이나 결정구조의 변화는 보이지 않았다. 미세한 구리분말을 합금분말 대비 3:1로 첨가하여 pellet형태의 전극을 제조하여 전극특성을 조사한 결과 Pd 첨가에 따른 초기 활성화와 급속 충방전 특성은 크게 변하지 않았다. 그러나 싸이클 수명에 있어서는 Pd를 첨가한 전극들이 Pd를 첨가하지 않는 전극에 비해 우수하였다. $AB_5$ type 조성의 합금에서는 Pd를 2wt% 첨가한 전극, 그리고 $AB_2$ type 조성의 합금에서는 Pd를 0.5wt% 첨가한 전극에서 싸이클 특성이 가장 우수하게 나타났다.

  • PDF

Evaluation of Metals (Al, Fe, Zn) in Alternative Fuels by Electrochemical Impedance Spectroscopy in Two Electrode Cell

  • Song, Yon-Kyun;Lim, Geun-Woong;Kim, Hee-San
    • Corrosion Science and Technology
    • /
    • 제9권2호
    • /
    • pp.92-97
    • /
    • 2010
  • Many kinds of alternative fuels such as biodiesel, ethanol, methanol, and natural gas have been developed in order to overcome the limited deposits in fossil fuels. In some cases, the alternative fuels have been reported to cause degrade materials. The corrosion rates of metals were measured by immersion test, a kind of time consuming test because low conductivity of these fuels was not allowed to employ electrochemical tests. With twin two-electrode cell newly designed for the study, however, electrochemical impedance spectroscopy (EIS) test was successfully applied to evaluation of the corrosion resistance ($R_p$) of zinc, iron, aluminum, and its alloys in an oxidized biodiesel and gasoline/ethanol solutions and the corrosion resistance from EIS was compared with the corrosion rate from immersion test. In biodiesel, $R_p$ increased in the order of zinc, iron, and aluminum, which agreed with the corrosion resistance measured from immersion test. In addition, on aluminum showing the best corrosion resistance ($R_p$), the effect of magnesium as an alloying element was evaluated in gasoline/ethanol solutions as well as the oxidized biodiesel. $R_p$ increased with addition of magnesium in gasoline/ethanol solutions containing chloride and the oxidized biodiesel. In the mean while, in gasoline/ethanol solutions containing formic acid, Al-Mg alloy added 1% magnesium had the highest $R_p$ and the further addition of magnesium decreased $R_p$. It can be explained with the fact that the addition of more than 1% magnesium increases the passive current density of Al-Mg alloys.

압연이 Ni-MH 2차전지용 금속수소화물 전극의 충·방전 특성에 미치는 영향 (The Effect of Rolling on the Charge-Discharge Characteristic of Metal Hydride Electrode for Ni-MH Secondary Battery)

  • 박원;장상민;최승준;노학;최전;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.165-171
    • /
    • 1996
  • The effect of rolling on the charge-discharge property was studied for metal hydride negative electrode. $(LM)Ni_{3.6}Al_{0.4}Co_{0.7}Mn_{0.3}$(pleateau pressure : below 1 atm at room temperature, volume expansion : 9%, entalpy : $8.7kcal/molH_2$) alloy was prepared by arc melting, and then it was coated with various copper weight percent. The copper coated alloys were then rolled with the different reduction ratio. From the results, it was found that the maximum discharge capacity increased with increasing reduction ratio, and 15wt% copper coated sample shows the highest discharge capacity, 324mAh/g, after rolling with 30% reduction ratio. In view of cycle life for the negative electrode, the 15wt% copper coated electrode which was rolled with 13% reduction ratio showed the longest cycle life compared with other electrodes.

  • PDF

Electro Discharge Deposition (EDD)을 이용한 미세 구조물 제작 (Fabrication of Micro Structure Using Electro Discharge Deposition)

  • 오석훈;민병권;박성준;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1865-1868
    • /
    • 2003
  • This paper provides a new method for hybrid machining, particularly suited to micro fabrication applications such as micro point, micro line, micro structure, micro partition and so on. Developed micro fabrication process by electrical discharge machining (EDM) and electrical discharge deposition (EDD) with metal powder (Ti, Fe) has been studied to build TiC or FeC structure. Titanium powder or iron powder is supplied from working fluid (kerosene or de-ionized water with powder) and adheres on a workpiece by the heat and electric power caused by the electrical discharge. The use of a tool electrode is expected to keep powder concentration high in the gap between a workpiece and a tool electrode and to accrete powder material on the workpiece. The deposition is tried under various electrical conditions (workpiece. tool electrode, working fluid, discharge current, voltage and powder etc.). On the other hand. using electrical discharge machining (EDM) with the same tool electrode, it can be used as a removal process (cutting) by electro erosion at the same time. Therefore. this new method can do a hybrid machining to build up and down a structure with the workpiece.

  • PDF

전기화학 반응에 의한 염화철 폐식각액의 재생 및 구리 회수에 관한 연구 (A Study on Electrochemical Regeneration of Waste Iron-chloride Etchant and Copper Recovery)

  • 김성은;이상린;강신춘;김이철;리즈완 셰이크;박융호
    • 청정기술
    • /
    • 제18권2호
    • /
    • pp.183-190
    • /
    • 2012
  • PCB에칭에 의해 발생한 염화철 폐식각액 중 염화철을 산화시키고 구리를 석출시키는 전기화학적 재생공정은 환경오염을 줄이면서도 부산물을 얻어내어 경제성이 크다. 그러나, 염화철 폐식각액은 철과 구리, 두 가지 금속이 함께 함유되어 있기 때문에 전해조에서 일어나는 반응이 복잡하다. 본 연구에서는 회분식 공정을 통하여 전기화학적인 염화철 산화 및 구리 석출반응의 특성을 조사하고 관련된 공정변수들의 최적 조건을 도출해내었다. 염화철의 산화는 항상 원하는 수준으로 되었으며, 탄소 음전극을 사용한 반응에서 $350mA/cm^2$의 전류밀도와 12 g/L의 구리 농도 조건에서, $Fe^{2+}$이온의 비율이 높을수록 구리 석출 효율이 높았다. 또한, 도출해낸 최적 조건을 바탕으로 Bench 장치 연속운전을 통해서 scale-up 가능성을 확인하였다.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • 한국재료학회지
    • /
    • 제33권10호
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

주철의 냉간 아크용접시 용접부의 부식에 관한 전기화학적 평가 (An Electrochemical Evaluation on the Corrosion of Weld Zone in Cold Arc Welding Process of the Cast Iron)

  • 김진경;문경만
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.273-275
    • /
    • 2005
  • Variation of hardness and corrosion potential of welding zone was investigated when cold arc welding of cast iron was carried out with a parameter of Ni electrode. Hardness of HAZ was the highest compared to other welding zone. And corrosion potential of HAZ was also more negative value than other welding zone. However there was not a proportional relation between hardness and corrosion potential. Local corrosion of HAZ was clearly appeared than other welding zone by small anode and large cathode in seal water solution.

  • PDF

영가철 충진 복극전해조를 이용한 질산성질소 및 대장균의 연속식 제거 (Continuous Removal of Nitrate and Coliform using Bipolar ZVI Packed Bed Electrolytic Cell)

  • 정주영;박정호;최원호;박주양
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.651-658
    • /
    • 2011
  • Nitrate is a common contaminant in industrial wastewater and ground water. The maximum contaminant level set by EPA for nitrate of 10 mg/L as N. In this study, nitrate was removed using bipolar ZVI packed bed electrolytic cell that maximized the contact area between each electrode and contaminants under 600 V. Also this study investigates the simultaneously deals with removal of ammonia by operating air stripping tower. In addition to the air stripping also helped to precipitate iron ions to the form of iron oxides. Bipolar ZVI packed bed electrolytic cell was also effective in removing coliform by electrical power. In the continuous experiments for the simulated wastewater (initial nitrate for 25 mg/L as N), maximum 96.3% removal of nitrate was achieved in the applied 600 V at the flow rate of 6 mL/min.

Tunneling the size of iron oxide NPs using different alcohols and proportions water-alcohol

  • Rivera, F.L.;Sanchez-Marcos, J.;Menendez, N.;Herrasti, P.;Mazario, E.
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.95-102
    • /
    • 2020
  • In this work the properties of iron oxide magnetic nanoparticles (MNPs) synthesized by electrochemical method using different water-alcohol proportions and alcohols have been investigated. The syntheses were carried out using 99% iron foils acting electrodes in a 0.04 M NaCl solutions at room temperature applying 22 mAcm-2 on the working electrode, mostly obtaining magnetite nanoparticles. The impact of the electrolyte in the size of the synthesized MNPs has been evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), chronopotentiometric studies, and magnetic characterization. The results have shown that nanoparticles can be obtained in the range of 6 to 26 nm depending on the type of alcohol and the proportions in the mixture of water-alcohol. The same trend has been observed for all alcohols. As the proportion of these in the medium increases, the nanoparticles obtained are smaller in size. This trend is maintained until a certain proportion of alcohol: 50% for methanol, and 60% for the rest of alcohols, proportions where obtaining a single phase of magnetite is not favored.