Browse > Article
http://dx.doi.org/10.12989/anr.2020.8.2.095

Tunneling the size of iron oxide NPs using different alcohols and proportions water-alcohol  

Rivera, F.L. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada)
Sanchez-Marcos, J. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada)
Menendez, N. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada)
Herrasti, P. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada)
Mazario, E. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada)
Publication Information
Advances in nano research / v.8, no.2, 2020 , pp. 95-102 More about this Journal
Abstract
In this work the properties of iron oxide magnetic nanoparticles (MNPs) synthesized by electrochemical method using different water-alcohol proportions and alcohols have been investigated. The syntheses were carried out using 99% iron foils acting electrodes in a 0.04 M NaCl solutions at room temperature applying 22 mAcm-2 on the working electrode, mostly obtaining magnetite nanoparticles. The impact of the electrolyte in the size of the synthesized MNPs has been evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), chronopotentiometric studies, and magnetic characterization. The results have shown that nanoparticles can be obtained in the range of 6 to 26 nm depending on the type of alcohol and the proportions in the mixture of water-alcohol. The same trend has been observed for all alcohols. As the proportion of these in the medium increases, the nanoparticles obtained are smaller in size. This trend is maintained until a certain proportion of alcohol: 50% for methanol, and 60% for the rest of alcohols, proportions where obtaining a single phase of magnetite is not favored.
Keywords
electrochemical synthesis; magnetic nanoparticle; conductivity; alcohol mixture; electrolyte;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Marin, T., Ortega, D., Montoya, P., Arnache, O. and Calderon, J. (2014), "A new contribution to the study of the electrosynthesis of magnetic nanoparticles: the influence of the supporting electrolyte", J. Appl. Electrochem., 44(12), 1401-1410. https://doi.org/10.1007/s10800-014-0766-z   DOI
2 Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T. and Serna C.J. (2003), "The preparation of magnetic nanoparticles for applications in biomedicine", J. Phys. D: Appl. Phys., 36(13), R182-R197. https://doi.org/10.1088/0022-3727/36/13/202   DOI
3 Thanh, N.T., Maclean, N. and Mahiddine, S. (2014), "Mechanisms of nucleation and growth of nanoparticles in solution", Chem. Rev., 114(15), 7610-7630. https://doi.org/10.1021/cr400544s   DOI
4 Butt, F.A. and Jafri, S.M.M. (2015), "Effect of nucleating agents and stabilisers on the synthesis of Iron-Oxide Nanoparticles-XRD analysis", Adv. Nano Res., Int. J., 3(3), 169-176. https://doi.org/10.12989/anr.2015.3.3.169   DOI
5 Cabrera, L., Gutierrez, S., Menendez, N., Morales, M.P. and Herrasti, P. (2008), "Magnetite nanoparticles: electrochemical synthesis and characterization", Electrochim. Acta, 53(8) 3436-3441. https://doi.org/10.1016/j.electacta.2007.12.006   DOI
6 Chen, H.I. and Chang, H.Y. (2004), "Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents", Colloids Surf. A Physicochem. Eng. Asp., 242, 61-69. https://doi.org/10.1016/j.colsurfa.2004.04.056   DOI
7 Cui, H., Ren, W., Lin, P. and Liu, Y. (2013), "Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route", J. Exp. Nanosci., 8(7-8), 869-875. https://doi.org/10.1080/17458080.2011.61654   DOI
8 Dang, F., Enomoto, N., Hojo, J. and Enpuku, K. (2009), "Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent", Ultrason. Sonochem., 16(5), 649-654. https://doi.org/10.1016/j.ultsonch.2008.11.003   DOI
9 Fang, M., Strom, V., Olsson, R.T., Belova, L. and Rao, K.V. (2012), "Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles", Nanotechnology, 23(14), 145601-145610. https://doi.org/10.1088/0957-4484/23/14/14560   DOI
10 Gao, J., Gu, H. and Xu, B. (2009), "Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications", Acc. Chem. Res., 42(8), 1097-1107. https://doi.org/10.1021/ar9000026   DOI
11 Gawande, M.B., Branco, P.S. and Varma, R.S. (2013), "Nanomagnetite ($Fe_{3}O_{4}$) as a support for recyclable catalysts in the development of sustainable methodologies", Chem. Soc. Rev., 42, 3371-3393. https://doi.org/10.1039/C3CS35480F   DOI
12 Karimzadeh, I., Dizaji, H.R. and Aghazadeh, M. (2016a), "Development of a facile and effective electrochemical strategy for preparation of iron oxides ($Fe_{3}O_{4}$ and ${\gamma}-Fe_{2}O_{3}$) nanoparticles from aqueous and ethanol mediums and in situ PVC coating of $Fe_{3}O_{4}$ superparamagnetic nanoparticles for biomedical applications", J. Magn. Magn. Mater., 416, 41681-41688. https://doi.org/10.1016/j.jmmm.2016.05.015
13 Han, C., Zhu, D., Wu, H., Li, Y., Cheng, L. and Hu, K. (2016), "TEA controllable preparation of magnetite nanoparticles ($Fe_{3}O_{4}$ NPs) with excellent magnetic properties", J. Magn. Magn. Mater., 408, 408213-408216. https://doi.org/10.1016/j.jmmm.2016.02.060
14 Hirt, A.M., Lanci, L., Dobson, J., Weidler, P. and Gehring, A.U. (2002), "Low-temperature magnetic properties of lepidocrocite". J. Geophys. Res., 107(B1), EPM-5. https://doi.org/10.1029/2001JB000242
15 Hughes, M.P. (2000), "AC electrokinetics: applications for nanotechnology", Nanotechnology, 11(2), 124-132. https://doi.org/10.1088/0957-4484/11/2/314   DOI
16 Karimzadeh, I., Dizaji, H.R. and Aghazadeh, M. (2016b), "Preparation, characterization and PEGylation of superparamagnetic $Fe_{3}O_{4}$ nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method", Mater. Res. Express, 3(9), 095022-095032. https://doi.org/10.1088/2053-1591/3/9/095022   DOI
17 Lozano, I., Casillas, N., Ponce de Leon, C., Walsh, F. and Herrasti, P. (2017), "New insights into the electrochemical formation of magnetite nanoparticles", J. Electrochem. Soc., 164(4), D184-D191. https://doi.org/10.1149/2.1091704jes   DOI
18 Lozano, I., Lopez, C., Menendez, N., Casillas, N. and Herrasti, P. (2018), "Design, construction and evaluation of a 3D printed electrochemical flow cell for the synthesis of magnetite nanoparticles", J. Electrochem. Soc., 165(11), H688-H697. https://doi.org/10.1149/2.1401810jes   DOI
19 Montoya, P., Marin, T., Mejia, S., Arnache, O. and Calderon, J.A. (2017), "Elucidation of the mechanism of electrochemical formation of magnetite nanoparticles by in situ raman spectroscopy", J. Electrochem. Soc., 164(14), D1056-D1065. https://doi.org/10.1149/2.0181802jes   DOI
20 Mazario, E., Stemper, J., Helal, A.S., Mayoral, A., Decorse, P., Losno, R., Lion, C., Ammar, S., Le Gall, T. and Hemadi, M. (2019), "New Iron Oxide Nanoparticles Catechol-Grafted with Bis(amidoxime)s for Uranium(VI) Depletion of Aqueous Solution", J. Nanopart. Res., 19(8), 4911-4919. https://doi.org/10.1166/jnn.2019.16804
21 Morup, S., Brok, E. and Frandsen, C. (2013), "Spin Structures in Magnetic Nanoparticles", J. Nanomater., 2013, 1-8. https://doi.org/10.1155/2013/720629   DOI
22 Negi, D.S., Sharona, H., Bhat, U., Palchoudhury, S., Gupta, A. and Datta, R. (2017), "Surface spin canting in $Fe_{3}O_{4}$ and $CoFe_{2}O_{4}$ nanoparticles probed by high-resolution electron energy loss spectroscopy", Phys. Rev. B, 95(17), 174444. https://doi.org/10.1103/PhysRevB.95.174444   DOI
23 Pascal, C., Pascal, J.L., Favier, F., Elidrissi Moubtassim, M.L. and Payen, C. (1999), "Electrochemical synthesis for the control of ${\gamma}-Fe_{2}O_{3}$ nanoparticle size. Morphology, microstructure, and magnetic behavior", Chem. Mater., 11(1), 141-147. https://doi.org/10.1021/cm980742f   DOI
24 Starowicz, M., Starowicz, P., Zukrowski, J., Przewoznik, J., Lemanski, A., Kapusta, C. and Banas, J. (2011), "Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size", J. Nanopart. Res., 13(12), 7167-7176. https://doi.org/10.1007/s11051-011-0631-5   DOI