• Title/Summary/Keyword: Iron chelator

Search Result 43, Processing Time 0.03 seconds

Evidence for the Association of Ce11u1ar Iron Loss in Nitric Oxide-induced Apoptosis of HL-60 Cells: Involvement of p38 Kinase, c-Jun N-terminal Kinase, Cytochrome C Release, and Caspases Pathways

  • Choi, Suck-Chei;Kim, Beom-Su;Yoon, Kwon-Ha;Song, Moon-Young;Oh, Hyun-Mee;Han, Weon-Cheol;Kim, Tae-Hyeon;Kim, Eun-Cheol;Jun, Chang Duk
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.171-180
    • /
    • 2002
  • Nitric oxide has high affinity for iron, and thus it can cause intracellular iron loss. We tested the idea that intracellular iron can be the primary target of NO toxicity by comparing the signaling mechanisms involved in cell death caused by iron depletion and that caused by NO. Treatment of HL-60 cells with a NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), decreased the intracellular iron level rapidly as that observed with the iron chelator deferoxamine (DFO). Iron chelators such as DFO and mimosine could induce death of human leukemic HL-60 cells by a mechanism requiring activation of p38 kinase, c-Jun N-terminal kinase, caspase-3 and caspase-8. DFO and SNAP also caused release of cytochrome c from mitochondria. Inhibition of p38 kinase by a selective inhibitor, SB203580, abolished the NO and DFO-induced cell death, release of cytochrome c, and activation of caspase-3 and caspase-8, thus indicating that p38 kinase lies upstream in the cell death processes. In a parallel situation, the cells that are sensitive to NO showed similar sensitivity to DFO. Moreover, simultaneous addition of ferric citrate, an iron-containing compound, inhibited the SNAP and DFO-induced activation of caspases and also blocked the NO-mediated cell cycle arrest at $G_1$ phase. Collectively, our data implicate that the NO-induced cell death of tumor cells including HL-60 cells is mediated by depletion of iron and further suggest that activation of p38 kinase lies upstream of cytochrome c release and caspase activation involved in this apoptotic process.

Oxidative Damage of DNA Induced by the Cytochrome c and Hydrogen Peroxide System

  • Kim, Nam-Hoon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.452-456
    • /
    • 2006
  • To elaborate the peroxidase activity of cytochrome c in the generation of free radicals from $H_2O_2$, the mechanism of DNA cleavage mediated by the cytochrome c/$H_2O_2$ system was investigated. When plasmid DNA was incubated with cytochrome c and $H_2O_2$, the cleavage of DNA was proportional to the cytochrome c and $H_2O_2$ concentrations. Radical scavengers, such as azide, mannitol, and ethanol, significantly inhibited the cytochrome c/$H_2O_2$ system-mediated DNA cleavage. These results indicated that free radicals might participate in the DNA cleavage by the cytochrome c and $H_2O_2$ system. Incubation of cytochrome c with $H_2O_2$ resulted in a time-dependent release of iron ions from the cytochrome c molecule. During the incubation of deoxyribose with cytochrome c and $H_2O_2$, the damage to deoxyribose increased in a time-dependent manner, suggesting that the released iron ions may participate in a Fenton-like reaction to produce $\cdot$OH radicals that may cause the DNA cleavage. Evidence that the iron-specific chelator, desferoxamine (DFX), prevented the DNA cleavage induced by the cytochrome c/$H_2O_2$ system supports this mechanism. Thus we suggest that DNA cleavage is mediated via the generation of $\cdot$OH by a combination of the peroxidase reaction of cytochrome c and the Fenton-like reaction of free iron ions released from oxidatively damaged cytochrome c in the cytochrome c/$H_2O_2$ system.

Reaction of ferritin with hydrogen peroxide induces lipid peroxidation

  • Yoon, Hung-Hwan;Lee, Myeong-Seon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.219-224
    • /
    • 2010
  • Lipid peroxidation is known to be an important factor in the pathologies of many diseases associated with oxidative stress. We assessed the lipid peroxidation induced by the reaction of ferritin with $H_2O_2$. When linoleic acid micelles or phosphatidyl choline liposomes were incubated with ferritin and $H_2O_2$, lipid peroxidation increased in the presence of ferritin and $H_2O_2$ in a concentration-dependent manner. The hydroxyl radical scavengers, azide and thiourea, prevented lipid peroxidation induced by the ferritin/$H_2O_2$ system. The iron specific chelator desferoxamine also prevented ferritin/$H_2O_2$ systemmediated lipid peroxidation. These results demonstrate the possible role of iron in ferritin/$H_2O_2$ system-mediated lipid peroxidation. Carnosine is involved in many cellular defense processes, including free radical detoxification. In this study, carnosine, homocarnosine, and anserine were shown to significantly prevent ferritin/$H_2O_2$ system-mediated lipid peroxidation and also inhibited the free radical-generation activity of ferritin. These results indicated that carnosine and related compounds may prevent ferritin/$H_2O_2$ system-mediated lipid peroxidation via free radical scavenging.

Oxidative Modification of Neurofilament-L by the Cytochrome c and Hydrogen Peroxide System

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.77-80
    • /
    • 2007
  • As neurofilament proteins are major cytoskeletal components of neuron, abnormality of neurofilament is proposed in brain with neurodegenerative disorders such as Parkinson's disease (PD). Since oxidative stress might play a critical role in altering normal brain proteins, we investigated the oxidative modification of neurofilament-L (NF-L) induced by the reaction of cytochrome c with H2O2. When NF-L was incubated with cytochrome c and H2O2, the protein aggregation was increased in cytochrome c and H2O2 concentrationsdependent manner. Radical scavengers, azide, formate and N-acetyl cysteine, prevented the aggregation of NFL induced by the cytochrome c/H2O2 system. The formations of carbonyl group and dityrosine were obtained in cytochrome c/H2O2-mediated NF-L aggregates. Iron specific chelator, desferoxamine, prevented the cytochrome c/H2O2 system-mediated NF-L aggregation. These results suggest that the cytochrome c/H2O2 system may be related to abnormal aggregation of NF-L which may be involved in the pathogenesis of PD and related disorders.

Characterization of Cytosol Acid Protease from Dormant Cyst of Artemia franciscana (Artemia franciscana cyst의 세포내 산성 Protease)

  • 최희선;최경희;류태형
    • Journal of Life Science
    • /
    • v.7 no.3
    • /
    • pp.228-233
    • /
    • 1997
  • A thiol protease has been isolated and partially purified from encysted brine shrimp Artemia franciscana using a four-step procedure(filtration, salting out, gel filtration and ion exchange chromatography). The optimum pH of the enzyme for caseinolytic activity was appeared to be 3.0, and the enzymematic activity was stable up to pH 6.0 but lost completely at the pH higher than 8.0. The optimal temperature of the enzyme was appeared to be 35$^{\circ}$C, and ninety percent of the enzyme activity was lost at 45$^{\circ}$C. Various metal ions, e.g., zinc, copper, iron, inhibited the enzyme activity; however, heavy metal chelator, e.g., EDTA, stimulated the enzyme activity. The protease was concluded to be a member of the thiol group protease, since it was inhibited by thiol protease inhibitors and iodoacetate. The protease was also concluded to be a acid protease based on optimum pH.

  • PDF

Effect of Scutellaria Baicalensis Georgi Extraction (SbGE) on H2O2-induced Inhibition of Phosphate Transport in Renal Epithelial Cells (황금약침액(黃芩藥鍼液)이 신장상피세포(腎臟上皮細胞)에서의 H2O2에 의한 인산염(燐酸鹽) 운반(運搬)의 억제(抑制)에 미치는 영향(影響))

  • Cho, Eun-jin;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-bo;Ahn, Chang-beobm
    • Journal of Acupuncture Research
    • /
    • v.19 no.4
    • /
    • pp.190-199
    • /
    • 2002
  • Objective : This study was performed to determine if Scutellaria balicalensis Georgi extract (SbGE) prevents oxidant-induced membrane transport dysfunction in renal tubular cells. Methods : Membrane transport function was estimated by measuring $Na^+$-dependent inorganic phosphate transport in opossum kidney (OK) cells. $H_2O_2$ inhibited phosphate transport in a dose-dependent manner. Results : The inhibitory effect of $H_2O_2$ was significantly prevented SbGE over concentration range of 0.005-0.05%. $H_2O_2$ caused ATP depletion, which was prevented by SbGE. $H_2O_2$ induced the loss of mitochondrial function as evidenced by decreased MTT reduction and its effect was prevented by SbGE. The $H_2O_2$-induced inhibition of phosphate transport was not affected by a potent antioxidant DPPD, but the inhibition was prevented by an iron chelator deferoxamine, suggesting that $H_2O_2$ inhibits $Na^+$-dependent phosphate transport via an iron-dependent nonperoxidative mechanism in renal tubular cells. Conclusion : These data suggest that SbGE may exert the protective effect against oxidant-induced membrane transport dysfunction by a mechanism similar to iron chelators in renal epithelial cells. However, furher studies should be carried out to find the active ingredient(s) of SbGE that exerts the protective effect.

  • PDF

Effects of Iron and chelators on Primary production and Nitrogen New Production in the Equatorial Pacific Upwelling System (적도 태평양 용승계에서 철과 킬레이트 화합물이 일차생산과 질소 신생산에 미치는 영향)

  • YANG, SUNG RYULL
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.52-68
    • /
    • 1993
  • Effects of iron and/or chelator addition on primary production in the equatorial Upwelling system were studied during the TOGA(Tropical oceans and Global Atmosphere) and EPOCS (Equatorial Pacific ocean Climate Studies) cruises in June and November-December of 1989. Changes in the phytoplankton biomass and the degree of iron stress were estimated using the changes in vivo fluorescence before and after the addition of DCMU, which is an inhibitor of photosynthetic electron transposer system. Nitrate uptake was measured using /SUP 45/N labeled KNO$_3$ to estimate the new production. When samples were taken from the Upwelling area where nitrate concentration was higher than 5 uM, there were significant differences between the control and cheated iron treatments in vivo fluorescence and in nitrate uptake capacity. However, CFC (Cellular fluorescence capacity) did not show any significant difference between the control and treatments until nutrient limitation becomes severse and cells become shifted-down. Outside of the Upwelling area where surface nitrate concentration was low (below 0.5 uM), there was no significant difference between the control and treatments in vivo fluorescence and CFC. It is evident that primary and new production in the equatorial Pacific Upwelling region are limited by the availability of iron. However, the physiology of phytoplankton indigenous to this region does not appear to be iron stressed judging from CFC values.

  • PDF

Effect of Zinc on Vascular Smooth Muscle Cell Death Mediated by PDTC

  • Moon Sung-Kwon;Ha Sang-Do
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.40-43
    • /
    • 2000
  • Pyrrolidinedithiocarbamate (PDTC) and N-Acetylcysteine (NAC) are metal and nonmetal-chelating antioxidant which can induce rat and human smooth muscle cell death. When the smooth muscle cells from mouse aorta (MASMC) that we successfully cultured recently was exposed to PDTC and NAC in a normal serum state, the cells were induced to death by these compounds. However, PDTC did not induce the cell death in a serum depleted medium. This data suggests that certain factors in the serum may mediate the cytotoxic effect of PDTC. The metal chelator, Ca-EDTA blocked PDTC-induced cell death, but Cu-, Fe-, and Zn-EDTA did not block the PDTC-induced cell death. This data indicated that copper, iron, and zinc in the serum may lead to the cytotoxic effect of PDTC. Investigation of the intracellular zinc level in PDTC-induced smooth muscle cell death using the zinc probe dye N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide shows that only the muscle-containing layers of the arteries have higher level of zinc. As expected, PDTC increased the intracellular fluorescence level of the zinc. In agreement with these results, the addition of an exogenous metal, zinc, induced the vascular aortic smooth muscle cell death which led to an increased intracellular zinc level. We concluded that PDTC induced mouse aortic smooth muscle cell death required not only zinc level but also intracellular copper and iron level. The mechanism of this antioxidant to induce vascular smooth muscle cell death may provide a new strategy to prevent their proliferation in arteriosclerotic lesions.

  • PDF

Lipid Peroxidation Induced by the Reaction of Cytochrome c with Hydrogen Peroxide

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.830-834
    • /
    • 2006
  • Lipid peroxidation induced by the reaction of cytochrome c with $H_2O_2$ was investigated. When linoleic acid micelles or phosphatidyl choline liposomes were incubated with cytochrome c and $H_2O_2$, lipid peroxidation was increased in cytochrome c and $H_2O_2$ concentrations-dependent manner. Radical scavengers, azide, formate and ethanol prevented lipid peroxidation induced by the cytochrome c/$H_2O_2$ system. Iron specific chelator, desferoxamine also prevented the cytochrome c/$H_2O_2$ system-mediated lipid peroxidation. These results suggest that lipid peroxidation may be induced by the cytochrome c/$H_2O_2$ system via the generation of free radicals. Carnosine, homocarnosine and anserine are present in the muscle and brain of many animals and human. Previous studies show that these compounds have an antioxidant function. In the present study, carnosine, homocarnosine and anserine significantly prevented the cytochrome c/$H_2O_2$ system-mediated lipid peroxidation. Carnosine and related compounds also inhibited the free radical-generating activity of cytochrome c. The results suggest that carnosine, homocarnosine and anserine may prevent lipid peroxidation induced by the cytochrome c/$H_2O_2$ system through a free radical scavenging.

In Vitro Activities of 2,2'-Dipyridyl Against Trichomonas vaginalis, Candida albicans, and Gardnerella vaginalis

  • Ryu, Jae-Sook;Min, Duk-Young;Kim, Myeong-Cheol;Kim, Nam-Sik;Shin, Myeong-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.124-130
    • /
    • 2001
  • The in vitro activities of 2,2'-dipyridyl, an iron-chelator, against clinical isolates of Trichomonas vaginalis, Candida albicans, and Gardnerella vaginalis was evaluated and compared with those of four other vaginal suppositories, ornidazole, clotrimazole, povidone-iodine, and $Cenacert^{\circledR}$ (Methylbezethonium Chloride mixed with 9-aminoacrydine undecylenate and hydrochloric acid N-myristyl-3-hydroxy butyl amine). The 2,2'-dipyridyl killed T. vaginalis and G. vaginalis at concentrations of $410\;{\mu}g/ml$ and $205\;{\mu}g/ml$, respectively, however, ths agent was less active against C. albicans (80% of which was inhiited at $410\;{\mu}g/ml$). The inhibition of these three pathogens by 2,2'-dipyridyl was similar to clotrimazole. In addition, the effect of 2,2'-dipyridyl on the ultrastructure of T. vaginalis, C. albicans, an G. vaginalis was examined. Transmission electron microscopy indicated that 2,2'-dipyridyl induced modifications of the cellular contents and cell envolope concumitant with the degradation of the three pathogens. These results suggest that 2,2'-dipyridyl has an inhibitory effect on C. albicans and G. vaginalis, as well as T. vaginalis.

  • PDF