• Title/Summary/Keyword: Iron Sulfate

Search Result 245, Processing Time 0.029 seconds

Synthesis of Iron Oxide and Adsorption of Arsenic on Iron Oxide (철산화물의 합성 및 이를 이용한 비소의 흡착제거)

  • Kim, Youn Jung;Choi, Sik Young;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.99-106
    • /
    • 2019
  • Arsenic is among the heavy metals commonly found in aqueous environments. Iron oxide is known as an efficient adsorbent for the arsenic. A new synthetic method was applied to provide iron oxide giving a large specific surface area. The mixing method affects the formation of iron oxide. Ultrasonic waves assisted the formation of very fine iron oxide in an organic phase. The synthesized iron oxide is amorphous type with a high surface area of more than $181.3m^2/g$. Sorption capacity of the synthesized adsorbent was relatively very high for arsenic and varied depending on the oxidation state of arsenic: a higher capacity was obtained with As(V). Lower solution pH provided a higher sorption capacity for As(V). The competitive effect of co-exist anions such as chloride, nitrate, and sulfate was minimal in sorption capacity of the iron oxide for arsenic.

Application of Nanosized Zero-valent Iron-Activated Persulfate for Treating Groundwater Contaminated with Phenol

  • Thao, Trinh Thi;Kim, Cheolyong;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 2017
  • Persulfate (PS) activated with nanosized zero-valent iron (NZVI) was tested as a reagent to remove phenol from groundwater. Batch degradation experiments indicated that NZVI/PS molar ratios between 1 : 2 and 1 : 5 were appropriate for complete removal of phenol, and that the time required for complete removal varied with different PS and NZVI dosages. Chloride ions up to 100 mM enhanced the phenol oxidation rate, and nitrate of any concentration up to 100 mM did not significantly affect the oxidation rate. NZVI showed greater performance than ferrous iron did as an activator for PS. A by-product was formed along with phenol degradation but subsequently was completely degraded, which showed the potential to attain mineralization with the NZVI/PS system. Tests with radical quenchers indicated that sulfate radicals were a predominant radical. The results of this study suggest that NZVI is a promising activator of PS for treating contaminated groundwater.

A Study on the Oxidation Reaction of Iron (II) Sulfate by Dry and Wet Process (황산제1철의 乾濕式에 의한 酸化反應에 對한 硏究)

  • Soo Duk Suhl;Joo Kyung Sung;Yong Kil Whang
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.121-124
    • /
    • 1977
  • A study on the formation of black iron oxide was carried in differents of Fe(III), Fe(II) ion in the aqueous solution that iron(II) sulfate was calcined under various temperature and leached in water. The results obtained was follows; (1) It was found that the sample calcined in an electric muffle furnace maintained at $500^{\circ}C$ for 1 hour and leached in water was equivalent mole (Fe(III) /Fe(II) = 1) in 20% aqueous solution. (2) When the above mentioned solution was hydrolyzed at pH range of 7 to 8 for 2 hours at $100^{\circ}C$, 93% and over of iron was recovered in the form of ${\alpha}-Fe_3O_4$ with a black colour.

  • PDF

Repair of Iron Deficiency in Rats by the Intake of Recombinant Yeast Producing Human H-ferritin (훼리틴 생산 재조합 효모의 철분 결핍성 빈혈 개선 효과)

  • Hwang Eun-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2006
  • This study examined whether or not the iron that is accumulated in the recombinant microbes that produce ferritin is bioavailable to rats with iron deficiency. Rats induced with iron deficiency were treated with iron preparations of $Fe(NH_4)_2(SO_4)_2$, horse spleen ferritin, control yeast, and ferritin-producing recombinant yeast for 14 days. The bioavailability of iron was examined by measuring hemoglobin concentration, hematocrit value, and tissue iron stores. Differences between dietary groups were determined by one-way ANOVA, at the level of significance p<0.05. Based on hemoglobin concentration and hematocrit value, iron in $Fe(NH_4)_2(SO_4)_2$, horse spleen ferritin, and ferritin-producing yeast were bioavailable in rats and cured iron deficiency. The efficacy of ferritin and ferritin-producing yeast was confirmed in establishing tissue iron stores after the induction of iron deficiency. The iron sources of ferritin and the ferritin-producing yeast seemed to be as effective for the recovery from iron deficiency as the iron compounds of ferric citrate and ferrous ammonium sulfate. The results suggest that the iron stored in ferritin of the recombinant yeast is bioavailable, and that the recombinant yeast may contribute widely as a source of iron to resolve the global problem of iron deficiency.

  • PDF

The Effect of Nutrition Education and Iron Supplementation on Iron Status of High School Girls (여고생의 철영양상태 개선을 위한 영양교육과 철보충제 효과 연구)

  • 홍순명;황혜진;서영은
    • Journal of Nutrition and Health
    • /
    • v.35 no.9
    • /
    • pp.943-951
    • /
    • 2002
  • This study was designed to investigate the effects of iron supplementation and nutrition education on the iron status and anemia of high school girls. The subjects resided in Ulsan city in Korea and were already diagnosed as having anemia or iron deficiency. Over a period of three months, one iron tablet (80 mg Fe as ferrous sulfate/day) was administered to the iron deficient subjects and two tablets (160 mg Fe as ferrous sulfate/day) were administered to the anemia subjects. The average height and weight of anemia subjects were 161.24 $\pm$ 4.50 cm and 50.87 $\pm$ 5.86 kg, respectively. The average BMI (kg/$m^2$ )was 19.58 $\pm$ 2.03 and the PIBW(percent ideal body weight) were 92.52 $\pm$ 9.84%. Except for vitamin A and vitamin C intakes, the intake levels of all other nutrients were below the RDA. Total calorie intakes of anemia subjects were 73.5% of RDA. The iron intakes of subjects from food were 69. 1% of RDA and the Ca intakes were 59.1% of RDA. The basal hemoglobin(Hb) concentration of anemia subjects averaged 10.77 $\pm$ 1.33 g/dl, and this increased significantly (p < 0.001) to 12.12 $\pm$ 1.08 g/dl, after iron supplementation. The basal ferritin, and transferrin saturations {TS (%)}of anemia subjects were 12.51 $\pm$ 15.19 ng/$m\ell$ and 8.43 $\pm$ 7.56%, respectively, and these significantly increased to 20.59 $\pm$ 22.39 ng/$m\ell$ and 15.56 $\pm$ 12.87%, respectively. The level of total iron binding protein (TIBC) significantly decreased from the initial 486.80 $\pm$ 70.16 $\mu\textrm{g}$/dl to 417.86 $\pm$ 67.73 $\mu\textrm{g}$/dl (p < 0.001) after iron supplementation. For the iron deficiency subjects, the ferritin, iron and TS(%) levels were increased significantly (p < 0.001) and the TIBC levels were significantly (p <0.001) decreased after iron supplementation. Anemia symptoms such as 'Feeling blue (p<0.05)', 'Decreased ability to concentrate (p<0.001)' and 'Poor memory (p<0.05)' improved significantly after iron supplementation in the anemia subjects. The number of tablets administered was positively correlated with changes in serum hemoglobin (t=0.194, p< 0.01), serum ferritin (t=0.181, p<0.01), TS(%) (t=0.141, p<0.05), and hematocrit (t=0.254, p<0.01), and was negatively correlated with changes in TIBC (t=-0.143. p<0.05) and red cell distribution width (RDW, t=-0.140, p<0.05). In conclusion, daily iron supplementation was effective in improving the iron status and reducing symptoms of anemia in high school girls. (Korean J Nutrition 35 (9) : 943~951,2002)

Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria (황산염환원균을 이용한 폐광폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Kwang Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Isolation of Iron and Calcium-Binding Peptides from Cottonseed Meal Protein Hydrolysates (면실박 단백질로부터 가수분해물 제조 및 철분, 칼슘 결합 펩타이드의 분리)

  • Choi, Dong-Won;Kim, Nam-Ho;Song, Kyung Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.4
    • /
    • pp.263-266
    • /
    • 2012
  • Isolation of iron and calcium-binding peptides derived from cottonseed meal protein (CMP) hydrolysates was investigated. The degree of hydrolysis of CMP by Flavourzyme was monitored using trinitrobenzenesulfonic acid method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Enzymatic hydrolysis of CMP for 12 h was sufficient for the preparation of CMP hydrolysates, and the hydrolysates were membrane-filtered under 3 kDa as a molecular weight. The filtered solution was fractionated using Q-Sepharose fast flow, Sephadex G-15, and reversed phase-high performance liquid chromatography for iron and calcium-binding peptides. As a result, F51 fraction was obtained as the best candidate for calcium and iron chelation, and the isolated iron and calcium-binding peptides can be used as functional food additives, similar to iron and calcium supplements.

Differential Pulse Voltammetric Determination of Iron(III) Ion with a Sodium Dodecyl Sulfate Modified Glassy Carbon Electrode (시차펄스전압전류법에서 도데실황산나트륨이 수식된 유리탄소전극에 의한 선택성 있는 철(III) 이온의 정량)

  • Ko, Young Chun;Kim, Jin Ah;Chung, Keun Ho
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.427-432
    • /
    • 1997
  • A selective method for the determination of iron(III) ion with a sodium dodecyl sulfate(SDS) modified glassy carbon electrode was proposed. It was based on the electrostatic attraction and complexation of the SDS modifier, $(DS^-)_n-Fe^{3+}$. The determination of iron(III) ion was performed by a differential pulse voltammetry(DPV), and the reduction peak potential of $(DS^-)_n-Fe^{3+}$ was +0.466(${\pm}0.002$)V vs. Ag/AgCl. For the determination of iron(III) ion, a linear calibration curve was obtained within the iron(III) ion concentration range of $0.50{\times}10^{-5}{\sim}10{\times}10^{-5}mol/L$, and the detection limit was $0.14{\times}10^{-5}mol/L$. $Cu^{2+}$, $Ni^{2+}$, $Co^{2+}$, $Pb^{2+}$, $Zn^{2+}$, and $Mn^{2+}$ showed little or no effect on the determination of iron(III) ion, respectively. But, ion such as each $CN^- $ and $SCN^-$ interfered seriously.

  • PDF

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

Microencapsulated Iron for Drink Yogurt Fortification

  • Kim, S.J.;Ahn, J.;Seok, J.S.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.581-587
    • /
    • 2003
  • This study was designed to examine the effect of icroencapsulated iron fortified drink yogurt and vitamin C as a bioavailable helper of iron on chemical and sensory aspects during 20 d storage. Coating material was polyglycerol monostearate (PGMS), and ferric ammonium sulfate and vit C were selected as core materials. The highest efficiency of microencapsulation of iron and vit C were 73% and 95%, respectively, with 5:1:50 ratio (w/w/v) as coating to core material to distilled water. Iron fortification did not affect the fermentation time required for the drink yogurt to reach pH 4.2. The addition of uncapsulated iron decreased the pH during storage. TBA absorbance was significantly lower in capsulated treatments than in uncapsulated treatments during storage. In sensory aspect, the yogurt sample added with uncapsulated iron and vit C, regardless of capsulation, showed a significantly high score of astringency, compared with those of control and other groups. A significantly strong sourness was observed in treatment containing capsulated iron and uncapsulated vitamin C at every time interval. The present study provides evidence that microencapsulation of iron with PGMS is effective for iron fortification in drink yogurt.