• Title/Summary/Keyword: Iron Particle

Search Result 361, Processing Time 0.025 seconds

Dissolution of North Korean Magnesite by using Hydrochloric Acid

  • Baek, Ui-Hyun;Park, Hyungkyu;Lee, Jin-Young;Kang, Jungshin
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.711-717
    • /
    • 2017
  • A fundamental study was conducted on the dissolution of North Korean magnesite using hydrochloric acid to understand the dissolution behavior of the magnesium and impurities. The influence of the acid concentration, particle size of the magnesite, reaction temperature, and pulp density on the dissolution of magnesium, iron, calcium, aluminum, and silicon dioxide was studied. The experimental results showed that 98.5% of magnesium, 86.9% of iron, 87.3% of calcium, 23.6% of aluminum, and 20.4% of silicon dioxide were dissolved when magnesite particle sizes within the range of $75{\sim}105{\mu}m$ were reacted using 3 M HCl solution under 6% pulp density at 363 K for 3 h. The residues that remained after the dissolution were silicon dioxide, talc, and clinochlore.

Microstructural Characterization of Gas Atomized Copper-Iron Alloys with Composition and Powder Size

  • Abbas, Sardar Farhat;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Cu-Fe alloys (CFAs) are much anticipated for use in electrical contacts, magnetic recorders, and sensors. The low cost of Fe has inspired the investigation of these alloys as possible replacements for high-cost Cu-Nb and Cu-Ag alloys. Here, alloys of Cu and Fe having compositions of $Cu_{100-x}Fe_x$ (x = 10, 30, and 50 wt.%) are prepared by gas atomization and characterized microstructurally and structurally based on composition and powder size with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Grain sizes and Fe-rich particle sizes are measured and relationships among composition, powder size, and grain size are established. Same-sized powders of different compositions yield different microstructures, as do differently sized powders of equal composition. No atomic-level alloying is observed in the CFAs under the experimental conditions.

Application of magnetic field to iron contained dust capture

  • Huang, Shan;Park, Hae-Woo;Jo, Young-Min;Park, Young-Koo;Kim, Youn-Che
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • Indoor air quality including metro subway is of recent interests in large cities. Inflow air to the inside of the train and circulating air flow through MVAC of stations contain large amount of iron based fine particles. This paper evaluated the collection of such a dust by magnetic filters as comparing to conventional particle capturing mechanisms such as inertia, direct impaction and diffusion. It was found that filtration velocity, magnetic field intensity, and fiber size were the most important parameters for magnetic filtration. Application of magnetic force obviously enhances the collection efficiency particularly in fine modes smaller than 10 mm. However, its effect was found greater in 2.5 mm than submicron particles.

Catalytic oxidation kinetics of iron-containing carbon particles generated from diesel-sprayed hydrogen-air diffusion flame (디젤-분무 수소-공기 확산화염에서 생성된 철-함유 탄소입자의 촉매 산화반응 특성)

  • Kim, Yongho;Kim, Yong-Tae;Kim, Soo Hyung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.51-67
    • /
    • 2008
  • In this study, we devoted to kinetic measurement of the catalytic oxidation of iron-containing flame soot particles and better understanding the role of catalytic particles on carbon oxidation in particular at low temperature, targeting on autothermal regeneration of diesel particulate filter by diesel exhaust gas. Carbon-based Fe-containing particles generated by spraying ferrocene-doped diesel fuel in an oxy-hydrogen flame are tested and compared with a commercial carbon black powder for thermogravimetric analysis (TGA), secondary ion mass spectrometry (SIMS), Fourier-transform infrared spectroscopy (FTIR), Induced coupled plasma-Atomic emission spectroscopy (ICP-AES), and High-resolution transmission electron microscopy (HR-TEM). As a result, we found that a small amount of the ferrocene addition led to significant reductions in a on-set temperature and an activation energy of the carbon oxidation as well. An oxygenated surface complex forming at the particle surface could be thought as active species that would be readily consumed in particular at low temperature.

  • PDF

Effects of alkali species and concentration on the size distribution of the co-precipitated magnetite particles used for phosphate adsorption (인 흡착용 마그네타이트 합성 시 알칼리 종류 및 농도가 공침 입자크기에 미치는 영향)

  • Lee, Minhyeong;Doliente, Jonica Ella;Nam, Haiuk;Kim, Yunjung;Choi, Younggyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.409-415
    • /
    • 2016
  • Magnetite particles were synthesized by co-precipitation of water-soluble 밀 스케일-derived precursor by various concentrations of (0.5, 0.67, 1, 2 N) NaOH and (0.6, 0.8, 1.2, 2.4 N) $NH_4OH$. It is theoretically known that as the concentration of the alkaline additive used in iron oxide synthesis increases, the particle size distribution of that iron oxide decreases. This trend was observed in both kind of alkaline additive used, NaOH and $NH_4OH$. In addition, the magnetite synthesized in NaOH showed a relatively smaller particle size distribution than magnetite synthesized in $NH_4OH$. Crystalline phase of the synthesized magnetite were determined by X-ray diffraction spectroscopy(XRD). The particles were then used as an adsorbent for phosphate(P) removal. Phosphorus adsorption was found to be more efficient in NaOH-based synthesized magnetite than the $NH_4OH$-based magnetite.

The effect of laser energy on the preparation of iron oxide by a pulsed laser ablation in ethanol

  • Maneeratanasarn, P.;Khai, T.V.;Choi, B.G.;Shim, K.B.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.134-138
    • /
    • 2012
  • Recently the preparation magnetic nanoparticles by a pulsed laser ablation in liquid has gained much attention because it is easy to control experimental parameters. Iron oxide magnetic nanoparticles have been prepared by a pulsed laser ablation of ${\alpha}-Fe_2O_3$ target in ethanol at different magnitude of laser energy of 1, 20, 40 and 80 mJ/pulse. It revealed that particle size increases with increasing laser energy. It could be concluded that 40 mJ/pulse is an optimum laser energy for the preparation of iron oxide nanoparticles with uniform size distribution. The nanoparticles are homogeneously dispersed in ethanol and their stability maintained for several months.

ICS(Iron oxide Coated Sand)를 이용한 비소 제거

  • 최형진;장윤영;양재규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.314-317
    • /
    • 2003
  • The overall objective of the adsorption study of arsenic was to elucidate the ability of iron coated sand(ICS), synthesized in the laboratory, to remove arsenic from polluted waters. Batch tests were conducted to provide a relation between arsenic removal and iron content of ICSs. The ICS, developed in the laboratory by coating iron onto the surface of ordinary sand by a simple and easy process has proved as an effective medium for use in removal of arsenic from waters over a wide range of particle sizes of ICS. The composite media is inexpensive to prepare and could serve as the basis of a useful arsenic removal process in variety settings.

  • PDF

Mössbauer Analysis of Cations on Iron Oxyhydroxide Formation

  • Oh, Sei-Jin;Kwon, Soon-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • Effect of different cations to the formation of iron oxyhydroxide was studied using $M\ddot{o}ssbauer$ spectroscopy, X-ray diffraction (XRD) and BET. Redox Potential and pH were measured for the determination of the internal reaction rate, as well. The phases of iron oxyhydroxide could not be the same with each other, due to the presence of different cations in solution. Although the oxyhydroxide compound was composed of the same phases, the fraction of each phase was different from each other. The internal reaction rate was varied by the substitution of cation. It could be a cause of the different phase and particle size of oxyhydroxide compound.

A New PIM Joining Process

  • Miura, Hideshi
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.203-210
    • /
    • 2002
  • A new PIM in-process joining technique has been developed for more complicated and functional PIM components by application of the exuded wax from the green compacts during solvent debinding step. At first, various stainless steels and iron compacts with rectangular shape were combined, and the joining behaviors and properties were investigated by shear and tensile test, and microscopic observation. Subsequently, perfect joined three pieces of thin and hollow compacts were obtained for the combination of same and different stainless steels, and it was difficult to join the iron and stainless steel compacts in hydrogen atmosphere because of the different starting temperature of shrinkage. However, pretty good joined iron and stainless steel compacts were obtained by consideration of particle size and vacuum atmosphere. Finally, for the combination of ferro-silicon and austenitic stainless steel compacts, high functionality (magnetic (1.60Tes1a) & non-magnetic) and perfect joint were obtained.

Magnetic Properties of Electrodeposited Iron and Cobalt on Porous Aluminum Oxide Layer (다공성 알루미늄 양극산화 피막에 도금된 철 및 코박트의 자기적 성질)

  • Kim, K. H.;Kang, T.;Sohn, H. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 1990
  • The magnetic properties of electrodeposited iron and cobalt films on porous aluminum oxide film were examined. There exists perpendicular magnetic anisotropy due to the shape anisotropy. The coercivity and squareness ratio of films were strongly dependent on deposited particle diameter. The effect of packing fraction on squareness ratio was also apprecible. Unlike the iron-deposited films, the magnetic properties of cobalt films were changed by preferred orientation because of it's large crystal ansotropy constant.(about 10 times of Fe) The Fe deposited films were found to be more suitable for perpendicular magenetic recording media bacause perpendicular coercivity, squareness ratio and the ratio of perpendicular coercivity to horizontal ones of iron films are greater than those of cobalt films.

  • PDF