Browse > Article
http://dx.doi.org/10.9713/kcer.2017.55.5.711

Dissolution of North Korean Magnesite by using Hydrochloric Acid  

Baek, Ui-Hyun (Strategic Minerals Utilization Research Department, Korea Institute of Geoscience and Mineral Resources)
Park, Hyungkyu (Strategic Minerals Utilization Research Department, Korea Institute of Geoscience and Mineral Resources)
Lee, Jin-Young (Strategic Minerals Utilization Research Department, Korea Institute of Geoscience and Mineral Resources)
Kang, Jungshin (Strategic Minerals Utilization Research Department, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Korean Chemical Engineering Research / v.55, no.5, 2017 , pp. 711-717 More about this Journal
Abstract
A fundamental study was conducted on the dissolution of North Korean magnesite using hydrochloric acid to understand the dissolution behavior of the magnesium and impurities. The influence of the acid concentration, particle size of the magnesite, reaction temperature, and pulp density on the dissolution of magnesium, iron, calcium, aluminum, and silicon dioxide was studied. The experimental results showed that 98.5% of magnesium, 86.9% of iron, 87.3% of calcium, 23.6% of aluminum, and 20.4% of silicon dioxide were dissolved when magnesite particle sizes within the range of $75{\sim}105{\mu}m$ were reacted using 3 M HCl solution under 6% pulp density at 363 K for 3 h. The residues that remained after the dissolution were silicon dioxide, talc, and clinochlore.
Keywords
North Korean magnesite; Dissolution of magnesite using HCl; Dissolution of magnesium; Dissolution of impurities;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jenkins, D. H., Sheehan, G. J. and Frost, M. T., Trans. Inst. Min Metall. C, 118, 205 (2009).
2 Hosgun, H. L. and Kurama, H., Ind. Eng. Chem. Res., 51, 1087 (2012).   DOI
3 Lacin, O., Donmez, B. and Demir, F., Int. J. Miner. Process., 75, 91 (2005).   DOI
4 Bakan, F., Lacin, O., Bayrak, B. and Sarac, H., Int. J. Miner. Process., 80, 27 (2006).   DOI
5 Hanawalt, J. D., Nelson, C. E. and Peloubet, J. A., Trans. AIME, 147, 273 (1942).
6 Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L. and Nuttall, R. L., J. Phvs. Chem. Ref. Data., Supplement No.2, 11, 2-1 (1982).
7 Ranjitham, A. M. and Khangaonkar, P. R., Hydrometallurgy, 23, 177 (1990).   DOI
8 Ross, G. J., Can. J. Chem., 45, 3031 (1967).   DOI
9 Mase, H., Bulletin of the Chemical Society of Japan, 34, 214 (1961).   DOI
10 Park, K.-H., Nam, C.-W. and Kim, H.-H., J. of Korean Inst. of Resources Recycling, 24, 3 (2015).
11 Fournier, R. O. and Rowe, J. J., Am. Mineral., 62, 1052 (1977).
12 Kim, C. W., et al., Deposits in North Korea (3), Science Encyclopedia Publishers, Pyongyang, North Korea (1991).
13 Song, G. L. and Atrens, A., Advanced Engineering Materials, 1, 11 (1999).   DOI
14 Mejdell, G. T., Baumann, H. M. and Tveten, K. W., United States Patent, 5112584 (1992).
15 U.S. Geological Survey, Mineral Commodity Summaries 2016, U.S. Geological Survey, Reston, Virginia, USA (2016).
16 Friedrich, H. E. and Mordike, B. L., Magnesium Technology, Springer-Verlag, Berlin Heidelberg, Germany (2016).
17 Kipouros, G. J. and Sadoway, D. R., The Chemistry and Electrochemistry of Magnesium Production, in: G. Mamantov, C.B. Mamantov, and J. Braunstein (Eds.), Advances in Molten Salt Chemistry 6, Elsevier Science Publishers B.V., Netherlands (1987).
18 Eom, H.-C., Park, H., Kim, C., Kim, S., Yoon, H., J. of Korean Inst. of Resources Recycling, 18, 38 (2009).
19 Tveten, K. W., Mejdell, G. T. and Marcussen, J. B., United States Patent, 5120514 (1992).
20 White, C. and Berube, M., United States Patent, 5980854 (1999).
21 Harris, G. B., Peacey, J. G. and Monette, S., United States Patent, 4743347 (1988).