• Title/Summary/Keyword: Iron Catalyst

Search Result 149, Processing Time 0.173 seconds

Synthesis of Carbon Nanofibers Based on Resol Type Phenol Resin and Fe(III) Catalysts

  • Hyun, Yu-Ra;Kim, Hae-Sik;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3177-3183
    • /
    • 2012
  • The carbon nanofibers (CNFs) used in this study were synthesized with an iron catalyst and ethylene as a carbon source. A concentration of 30 wt % iron(III) acetylacetonate was dissolved in resol type phenol resin and polyurethane foam was put into the solution. The sample was calendered after being cured at $80^{\circ}C$ in air for 24 h. Stabilization and carbonization of the resol type phenol resin and reduction of the $Fe^{3+}$ were completed in a high-temperature furnace by the following steps: 1) heating to $600^{\circ}C$ at a rate of $10^{\circ}C/min$ with a mixture of $H_2/N_2$ for 4 h to reduce the $Fe^{3+}$ to Fe; 2) heating to $1000^{\circ}C$ in $N_2$ at a rate $10^{\circ}C/min$ for 30 minutes for pyrolysis; 3) synthesizing CNFs in a mixture of 20.1% ethylene and $H_2/N_2$ at $700^{\circ}C$ for 2 h using a CVD process. Finally, the structural characterization of the CNFs was performed by scanning electron microscopy and a synthesis analysis was carried out using energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Specific surface area analysis of the CNFs was also performed by $N_2$-sorption.

Effect of surfactants on reductive degradation of Endosurfan I and II by ZVM (영가금속에 의한 Endosulfan I과 II의 환원분해에 미치는 계면활성제의 영향)

  • 김진영;김영훈;신원식;전영웅;송동익;최상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.187-190
    • /
    • 2002
  • Reductive dechlorination of endosulfans was studied with zero valent metals (ZVMs) and bimetals in aqueous batch reactors. The effect of surfactants was evaluated. Endosulfan was successfully dechlorinated with zero valent iron. However, a bimetal, palladium coated iron (Pd/Fe) showed a highly enhanced reactivity for both endosulfan I and II indicating palladium act as a dechlorination catalyst on the iron. The effect of surfactants on degradation with ZVM has been very controvertible. Variable concentration of a nonionic surfactant, Triton X-100 and an anionic surfactant, SDS were added into the reactor with ZVM. The reaction rates of endosulfan were increased with both surfactants. In the case of Triton X-100, the reaction rate was increased with the increasing surfactant concentration up to 400 mg/L. Addition of small amount of surfactant under the CMC, the reaction rate was increased. However, the enhancing effect was diminished when a higher concentration of surfactant (1,000 mg/L) was used. Current study implicate that the surfactant adsorbed on the metal surface might increase the surface concentration of endosulfan resulting in the increased reaction rate. However, partitioning of endosulfan into the micelle formed at the high concentration of surfactant diminish the enhancing effect by reducing the contact chance between target compound and the metal surface.

  • PDF

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas (코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구)

  • CHEON, HYUNGJUN;HAN, GWANGWOO;BAE, JOONGMYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

Effects of Cu and K Addition on Catalytic Activity for Fe-based Fischer-Tropsch Reaction (Fe계 Fischer-Tropsch 반응에서 촉매활성에 대한 Cu와 K의 첨가 효과)

  • Lee, Chan Yong;Kim, Eui Yong
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Effects of the Cu and K addition and the reduction condition of Fe-based catalysts for Fischer-Tropsch reaction are studied in a continuous flow reactor in this research. The catalysts for the reaction were prepared by homogeneous precipitation followed by incipient wetness impregnation. Physicochemical properties of the $Al_2O_3$ supported Fe-based catalysts are characterized by various methods including X-ray diffraction (XRD), temperature programmed reduction (TPR), and scanning electron microscopy (SEM). Catalytic activities and stabilities of the Fe/Cu/K catalyst are investigated in time-on-stream for an extended reaction time over 216 h. It is found that a reduction of the catalysts using a mixture of CO and $H_2$ can promote their catalytic activities, attributed to the iron carbides formed on the catalysts surface by X-ray diffraction analysis. The addition of Cu induces a fast stabilization of the reaction reducing the time to reach at the steady state by enhancement of catalytic reduction. The addition of K to the catalysts increases the CO conversion, while the physical stability of catalyst decreases with potassium loading up to 5%. The Fe/Cu (5%)/K (1%) catalyst shows an enhanced long term stability for the Fischer-Tropsch reaction under the practical reaction condition, displaying about 15% decrease in the CO conversion after 120 h of the operation.

Decomposition Characteristics of 4-Chlorophenol Treated in Fe2O3 Supported γ-Alumina Catalyst and O3 (Fe2O3/γ-Al2O3 세라믹촉매와 오존을 이용한 4-클로로페놀의 분해특성)

  • 박병기;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.485-492
    • /
    • 2004
  • We prepared cylindrical y-alumina pellets using amorphous alumina and pore generating agent. The pellets were immersed in an aqueous solution of the mixture of Fe(NO$_3$)$_3$ㆍ9$H_{2}O$ and $CH_3$COOH. They were then hydrothermally treated at 20$0^{\circ}C$ for 3 h in autoclave, dried and calcined. For the application of environmental catalyst for its, we investigated the decomposition characteristics of 4-chlorophenol and the initiation characteristics of OH' conversion action in $O_3$ environment with or without the Fe$_2$O$_3$ supported ${\gamma}$-alumina catalyst and $O_3$ molecule.

Decomposition Characteristics of Aniline Treated in Fe2O3 Supported γ-Alumina Catalyst and O3 (Fe2O3γ-Al2O3 세라믹촉매와 오존을 이용한 아닐린의 분해특성)

  • Park, Byung-Ki;Suh, Jeong-Kwon;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.237-244
    • /
    • 2005
  • We prepared the cylindrical $\gamma-alumina$ pellets of 5 mm in diameter and 10 mm in average length using amorphous alumina and pore generating agent. The pellets were immersed in an aqueous solution of the mixture of $Fe(NO_{3})_{3}{\cdot}9H_{2}O$ and $CH_{3}COOH$. They were then hydrothermally treated at $200^{\circ}C$ for 3 h in autoclave, dried and calcined. For the application as an environmental catalyst, we investigated the decomposition characteristics of aniline and the initiation characteristics of $OH^{\cdot}$ conversion action in $O_{3}$ environment with or without the $Fe_{2}O_{3}$ supported y-alumina catalyst and $O_{3}$ molecule.

Synthesis and Characterization of Fe-Co/mesoHZSM-5 : Effect of Desilication Agent and Iron-cobalt Composition

  • Jimmy, Jimmy;Roesyadi, Achmad;Suprapto, Suprapto;Kurniawansyah, Firman
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Synthesis of Fe-Co/meso-HZSM5 catalyst, intended to be applied in Fischer-Tropsch (FT) reaction was investigated. The study emphasized the effect of desilication agents, NaOH and KOH, on the catalyst materials properties. Impregnation composition of active metal (Fe and Co) was also examined. HZSM-5, converted from ammonium ZSM-5 through calcination, was treated with NaOH and KOH for desilication, followed by impregnation with 10% metal loading. Fe composition in the initial mixture was varied at 10-50% from total composition. After impregnation, reduction was applied by flowing hydrogen gas at 400 ℃ for 10 hours. The use of KOH solution induced greater mesoporous volumes; however, it had a detrimental effect on zeolite crystal structure. NaOH solutions, on the other hand, increased mesopore area as high as 100%, indicated from surface area increase from 266.28 m2/g of HZSM-5, to 526.03 m2/g of NaOH-desilicated HZSM-5. In addition, the application of NaOH solution increased pore volume from 0.14 cc/g to 0.486 cc/g. Further, more Fe-Co alloys and less oxide of iron (Fe2O3) as well cobalt (Co3O4) had been commonly observed in the produced catalysts. The largest Fe-Co alloys could be found in 50Fe-50Co/HZSM-5

Simultaneous Removal of $NO_x$ and $SO_2$ through the Combination of Sodium Chlorite Powder and Carbon-based Catalyst at Low Temperature ($NaClO_2(s)$와 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$$SO_2$ 동시 제거)

  • Byun, Young-Chul;Lee, Ki-Man;Koh, Dong-Jun;Shin, Dong-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • NO oxidation is an important prerequisite step to assist the selective catalytic reduction (SCR) at low temperatures ($<200^{\circ}C$). Therefore, we conducted the lab- and bench-scales experiments appling the sodium chlorite powder ($NaClO_2(s)$) for the oxidation of NO to $NO_2$ and the carbon-based catalyst for the reduction of $NO_x$ and $SO_2$; the lab- and bench-scales experiments were conducted in laboratory and iron-ore sintering plant, respectively. In the lab-scale experiment, known concentrations of $NO_x$ (200 ppm), $SO_2$ (75 ppm), $H_2O$ (10%) and $NH_3$ (400 ppm) in 2.6 L/min were introduced into a packed-bed reactor containing $NaClO_2(s)$, then gases produced by the reaction with $NaClO_2(s)$ were fed into the carbon-based catalyst (space velocity = $2,000hr^{-1}$) at $130^{\circ}C$. In the bench-scale experiment, flue gases of $50Nm^3/hr$ containing 120 ppm NO and 150 ppm $SO_2$ were taken out from the duct of iron-ore sintering plant, then introduced into the flow reactor; $NaClO_2(s)$ were injected into the flow reactor using a screw feeder. Gases produced by the reaction with $NaClO_2(s)$ were introduced into the carbon-based catalyst (space velocity = $1,000hr^{-1}$). Results have shown that, in both lab- and bench-scales experiments, NO was oxidized to $NO_2$ by $NaClO_2(s)$. In addition, above 90% of $NO_x$ and $SO_2$ removal were obtained at the carbon-based catalyst. These results lead us to suggest that the combination of $NaClO_2(s)$ with the carbon-based catalyst has the potential to achieve the simultaneous removal of $NO_x$ and $SO_2$ at low temperature ($<200^{\circ}C$).

Microstructure Analysis of Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학기상증착법으로 성장시킨 탄소나노튜브의 미세구조 분석)

  • Yoon Jongsung;Yun Jondo;Park Jongbong;Park Kyeongsu
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.246-251
    • /
    • 2005
  • Plasma enhanced chemical vapor deposition(PE-CVD) method has an advantage in synthesizing carbon nanotubes(CNTs) at lower temperature compared with thermal enhanced chemical vapor deposition(TE-CVD) method. In this study, CNTs was prepared by using PE-CVD method. The growth rate of CNT was faster more than 100 times on using Invar alloy than iron as catalyst. It was found that chrome silicide was formed at the interface between chrome layer and silicon substrate which should be considered in designing process. Nanoparticles of Invar catalyst were found oxidized on their surfaces with a depth of 10 m. Microstructure was analyzed by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray spectrometry. Based on the result of analysis, growth mechanism at an initial stage was suggested.