• Title/Summary/Keyword: IrMn

Search Result 236, Processing Time 0.028 seconds

Properties of $Cl^-$ Binding Site in Oxygen-Evolving Complex of Photosystem II Studied by FTIR Spectroscopy

  • Koji Hasegawa;Kim, Yukihiro ura;Asako Ishii;Jun Minagawa;Ono, Taka-aki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.376-378
    • /
    • 2002
  • Role of cl$^{[-10]}$ in photosynthetic oxygen-evolving complex was studied by light-induced Fourier transform infrared (FTIR) spectroscopy. cl$^{[-10]}$ depletion resulted in the suppression of amide I and amide II IR modes upon S$_1$ to S$_2$ transition. Br$^{[-10]}$ , 1$^{[-10]}$ and N0$_3$$^{[-10]}$ substituted FTIR difference spectra were very similar to that in cl$^{[-10]}$ reconstitution. F$^{[-10]}$ and $CH_3$COO$^{[-10]}$ substituted spectra were largely distorted. We succeeded in detecting the structural change of N0$_3$ $^{[-10]}$ in the cl$^{[-10]}$ site upon the S$_1$ to S$_2$ transition from $^{14}$ N0$_3$$^{[-10]}$ /$^{15}$ N0$_3$$^{[-10]}$ difference spectrum.

  • PDF

Single Magnetic Bead Detection in a Microfluidic Chip Using Planar Hall Effect Sensor

  • Kim, Hyuntai;Reddy, Venu;Kim, Kun Woo;Jeong, Ilgyo;Hu, Xing Hao;Kim, CheolGi
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.10-14
    • /
    • 2014
  • In this study, we fabricate an integrated microfluidic chip with a planar Hall effect (PHE) sensor for single magnetic bead detection. The PHE sensor was constructed with a junction size of $10{\mu}m{\times}10{\mu}m$ using a trilayer structure of Ta(3 nm)/NiFe(10 nm)/Cu(1.2 nm)/IrMn(10 nm)/Ta(3 nm). The sensitivity of the PHE sensor was 19.86 ${\mu}V/Oe$. A diameter of 8.18 ${\mu}m$ magnetic beads was used, of which the saturation magnetization was ~2.1 emu/g. The magnetic susceptibility ${\chi}$ of these magnetic beads was calculated to be ~0.14. The diluted magnetic beads solution was introduced to the microfluidic channel attributing a single bead flow and simultaneously the PHE sensor voltage was measured to be 0.35 ${\mu}V$. The integrated microchip was able to detect a magnetic moment of $1.98{\times}10^{-10}$ emu.

Tantalum Oxide를 활용한 스마트 윈도우용 전기변색 디바이스 특성

  • Park, Jae-Seong;Seo, Chang-Taek;Lee, Dong-Ik;Sin, Han-Jae;Hwang, Do-Yeon;Lee, Jeong-Hwan;Park, Seong-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.496-496
    • /
    • 2013
  • 스마트윈도우는 디스플레이, 산업용 외장재 등 다양한 분야에 응용이 가능하며, 특히 전기변색을 이용한 디바이스는 나노코팅 기술을 통한 나노입자 및 나노가공제어 등 나노융합기술을 접목할 수 있다. 전기변색 디바이스는유리 또는 필름 기판소재를 통해 제작이 가능하며, 본 연구에서는 전기변색의 산화, 환원반응에 의해 재료의 광특성이 가역적으로 변화할 수 있는 물질을 증착하여 기존 라미네이터 및 Sol-Gel방식의 전해질보다 열화현상에의한 성능저하를 막아주는 박막전해질 코팅 연구이다. 전기변색 소자는 외부 인가 전압(external voltage)에 의해 유도된 전하의 주입(injection) 과 추출(extraction)을 통하여 그 광학적 특성(optical property)을 가역적으로(reversibly) 변 화시킬 수 있는 특징을 가지고 있다. 전기변색소재의 원리를 간략하게 설명하면 대표적인 환원착색 물질인 전기변색층(WO, MoO, Nb2O5 등)으로 Li+ 또는 H+과 전자가 주입되면 전기변색되고 방출 시는 투명하게 되며, 반대로산화착색 물질인(V2O5, NiO, IrO, MnO 등)으로 Li+ 또는 H+과 전자가 방출되면 변색되고 주입되면 투명하게 되는 것이다. 본 연구에서는 전자가 주입되는 환원착색물질인 WO와 함께 Ta2O5박막을 증착하여 광학적특성을 연구하고 박막의 두께 및 전압인가에따른 변색 및 응답속도를 연구하고자 한다.

  • PDF

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.607-608
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05(MHz) to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2239-2240
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05[MHz] to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channel and GMR-SV Device

  • Park, Ji-Soo;Kim, Nu-Ri;Jung, Hyun-Jun;Khajidmaa, Purevdorj;Bolormaa, Munkhbat;Lee, Sang-Suk
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2015.05a
    • /
    • pp.161-163
    • /
    • 2015
  • The micro device, coil, and channel for the biosensor integrated with the GMR-SV device based on the antiferromagnetic IrMn layer was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ passed on the micro channel, the movement of RBC + ${\mu}Beads$ is controlled by the electrical AC input signal. The RBC + ${\mu}Beads$ having a micro-magnetic field captured above the GMR-SV device is changed as the output signals for detection status. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property as the membrane's deformation of RBC coupled to magnetic beads.

  • PDF

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1273-1274
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05[MHz] to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

Size and Aspect Ratio Effects on the Magnetic Properties of a Spin-Valve Multilayer by Computer Simulation

  • Lim, S.H.;Han, S.H.;Shin, K.H.;Kim, H.J.
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.90-98
    • /
    • 2000
  • The change in the magnetic properties of a spin-valve multilayer with the structure IrMn (9 m)/CoFe (4 nm)/Cu (2.6 nm)/CoFe (2 nm)/NiEe (6 nm) is investigated as a function of the size and the aspect ratio. At a fixed aspect ratio (the length/width ratio) of 2, the magnetostatic interactions begin to affect the magnetic properties substantially at a spin-valve length of 5 $\mum$, and, at a length of 1 $\mum$, they become even more dominant. In the case of a fixed multilayer size (2.4 $\mum$) which is indicated by the sum of the length and the width, magnetization change occurs by continuous spin-reversal and M-H loops are characterized by no or very small hysteresis at aspect ratios smaller than unity, At aspect ratios greater than unity, magnetization change occurs by spin-flip resulting in squared hysteresis loops. A very large changes in the coercivity and the bias field is observed, and these results are explained by two separate contributions to the total magnetostatic interactions: the coercivity by the self-demagnetizing field and the bias field by the interlayer magnetostatic interaction field.

  • PDF

Synthesis, Structures and Properties of Three Metal-organic Frameworks Based on 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic Acid

  • Liang, Peng;Ren, Tian-Tian;Tian, Wei-Man;Xu, Wen-Jia;Pan, Gang-Hong;Yin, Xian-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.182-188
    • /
    • 2014
  • Three new transition metal complexes based on Ozagrel $[Cu(Ozagrel)]_n$ (1), $[Zn(Ozagrel)(Cl)]_n$ (2), ${[Mn_2-(Ozagrel)(1,4-ndc)_2]{\cdot}(H_2O)}_n$ (3), (Ozagrel = 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic acid; 1,4-ndc = 1,4-Naphthalenedicarboxylic acid) have been hydrothermally synthesized and characterized by elemental analyse, IR, TG, PXRD, electrochemical analysis and single crystal X-ray diffraction. X-ray structure analysis reveals that 1 and 3 are 3D coordination polymers, while complex 2 is a two-dimensional network polymer, the 2D layers are further packed into 3D supramolecular architectures that are connected through hydrogen bonds. The electrochemistry of 1-3 was studied by cyclic voltammetry in methanol and water using a glassy carbon working electrode. Also, thermal decomposition process and powder X-ray diffraction of complexes were investigated.

Tourmaline Crystal Growth by FZ Method (FZ법에 의한 Tourmaline 단결정 성장)

  • 강승민;신재혁;한종원;최종건;오근호;박한수;문종수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 1993
  • Na-Fe Tourmalene ($NaFe_3Al_6B_3Si_6O_{27}F_4$)single crystals were grown by FZ method. The Growth conditions are counter rotation 20~30rpm, growth rate 1~5mm/hr in the atmospheric environment. The transition elements as Fe(in this research), Mn, Co, etc, are exist in the theoretical fomulae so that dopants were not added. The feed rod was sintered between $1000^{\circ}C$ and $1l00^{\circ}C$, but at higher temperature, it was difficult to manufacture the feed rod because of evaporation of the elements such as F. As grown crystals had a black color and the length of 50~60mm, the diameter of 5~6mm. X-ray powder diffraction pattern indicated that the composition of the feed rod was right to the Tourmaline composition. By FT-IR spectra, the state of bonding of each element was charaterized.

  • PDF