Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.1.010

Single Magnetic Bead Detection in a Microfluidic Chip Using Planar Hall Effect Sensor  

Kim, Hyuntai (Department of Materials Science and Engineering, Chungnam National University)
Reddy, Venu (Department of Materials Science and Engineering, Chungnam National University)
Kim, Kun Woo (Department of Materials Science and Engineering, Chungnam National University)
Jeong, Ilgyo (Department of Materials Science and Engineering, Chungnam National University)
Hu, Xing Hao (Department of Materials Science and Engineering, Chungnam National University)
Kim, CheolGi (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Abstract
In this study, we fabricate an integrated microfluidic chip with a planar Hall effect (PHE) sensor for single magnetic bead detection. The PHE sensor was constructed with a junction size of $10{\mu}m{\times}10{\mu}m$ using a trilayer structure of Ta(3 nm)/NiFe(10 nm)/Cu(1.2 nm)/IrMn(10 nm)/Ta(3 nm). The sensitivity of the PHE sensor was 19.86 ${\mu}V/Oe$. A diameter of 8.18 ${\mu}m$ magnetic beads was used, of which the saturation magnetization was ~2.1 emu/g. The magnetic susceptibility ${\chi}$ of these magnetic beads was calculated to be ~0.14. The diluted magnetic beads solution was introduced to the microfluidic channel attributing a single bead flow and simultaneously the PHE sensor voltage was measured to be 0.35 ${\mu}V$. The integrated microchip was able to detect a magnetic moment of $1.98{\times}10^{-10}$ emu.
Keywords
planar Hall effect sensor; trilayer structure; single magnetic bead detection; microfluidics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. J. A. Janssen, L. J. van Ijzendoorn, and M. W. J. Prins, Biosens. Bioelectron. 23, 833 (2008).   DOI   ScienceOn
2 B. Srinivasan, Y. Li, Y. Jing, Y. Xu, X. Yao, C. Xing, and J. Wang, Angew. Chem. Int. Ed. 48, 2764 (2009).   DOI   ScienceOn
3 G. Li, S. Sun, R. J. Wilson, R. L. White, N. Pourmand, and S. X. Wang, Sens. Actuators A 126, 98 (2006).   DOI   ScienceOn
4 C. R. Tamanaha, S. P. Mulvaney, J. C. Rife, and L. J. Whitman, Biosens. Bioelectron. 24, 1 (2008).   DOI   ScienceOn
5 T. Q. Hung, S. Oh, J.-R. Jeong, and C. G. Kim, Sens. Actuators A 157, 42 (2010).   DOI   ScienceOn
6 P. P. Freitas, R. Ferreria, S. Cardoso, and F. Cardoso, J. Phys.: Condens. Matter 19, 165221 (2007).   DOI   ScienceOn
7 P. P. Freitas, H. A. Ferreira, D. L. Graham, L. A. Clarke, M. D. Amaral, V. Martins, L. Fonseca, and J. S. Cabral, in: M. Johnson (Ed.), Magnetoelectronics, Elsevier, Amsterdam, 2004.
8 Francois Montaigne, A. Schuhl, F. Nguyen Van Dau, and A. Encinas, Sens. Actuators A 81, 324 (2000).   DOI   ScienceOn
9 Y. Bason, L. Klein, J. B. Yau, X. Hong, J. Hoffman, and C. H. Ahn, J. Appl. Phys. 99, R701 (2006).
10 M. Volmer, J. Neamtu, Physica B 403, 350 (2008).   DOI   ScienceOn
11 B. Sinha, S. Anandakumar, S. Oh, and C. Kim, Sens. Actuators A 182, 34 (2012).   DOI   ScienceOn
12 R. Venu, B. Lim, X. H. Hu, I. Jeong, T. S. Ramulu, and C. G. Kim, Microfludics and Nanofludics 14, 277 (2013).   DOI
13 I. Jeong, Y.-J. Eu, K. W. Kim, X. H. Hu, B. Sinha, and C. G. Kim, J. Magnetics 17, 302 (2012).   DOI   ScienceOn