• Title/Summary/Keyword: Ir(III) complex

Search Result 70, Processing Time 0.022 seconds

Red-Orange Emissive Cyclometalated Neutral Iridium(III) Complexes and Hydridoiridium(III) Complex Based on 2-Phenylquinoxaline : Structure, Photophysics and Reactivity of Acetylacetone Towards Cyclometalated Iridium Dimer

  • Sengottuvelan, Nallathambi;Yun, Seong-Jae;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4321-4326
    • /
    • 2011
  • A new series of heteroleptic cyclometalated iridium(III) complexes has been synthesized and characterized by absorption, emission and cyclic voltammetry studies: $(pqx)_2Ir(acac)$ (1), $(dmpqx)_2Ir(acac)$ (2) and $(dfpqx)_2Ir(acac)$ (3) where pqx=2-phenylquinoxalinate, dmpqx=2-(2,4-dimethoxyphenyl)quinoxalinate, dfpqx=2-(2,4-difluorophenyl) quinoxalinate and acac=acetylacetonate anion. The reaction of excess acetylacetone with ${\mu}$-chloride-bridged dimeric iridium complex, $[(C\^N)_2Ir({\mu}-Cl)]_2$, gives a complex 1 and an unusual hydridoiridium(III) complex, $(pqx)IrH(acac)_2$ (4). The complex 1, 2 and 3 show their emissions in an orangered region (${\lambda}_{PL,max}$ = 583-616 nm), and the emission maxima can be tuned by the change of substituent at phenyl ring of 2-phenylquinoxaline ligand. The phosphorescent line shape indicates that the emissions originate predominantly from $^3MLCT$ states with little admixture of ligand-based $^3({\pi}-{\pi}^*)$ excited states. The structures of complex 3 and 4 are additionally characterized by a single crystal X-ray diffraction method. The complex 3 shows a distorted octahedral geometry around iridium(III) metal ion. A strong trans influence of the phenyl ring is examined. In complex 4, there are two discrete molecules which are mirror images each other at the ratio of 1:1 in an unit cell. We propose that the phosphorescent complex 1, 2 and 3 are possible candidates for the phosphors in OLEDs applications.

Highly Efficient Red Phosphorescent OLEDs Based on Ir(III) Complexes with Fluorine-substituted Benzoylphenylpyridine Ligand

  • Kang, Hyun-Ju;Lee, Kum-Hee;Lee, Suk-Jae;Seo, Ji-Hyun;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3711-3717
    • /
    • 2010
  • Four orange-red phosphorescent Ir(III) complexes were designed and synthesized based on the benzoylphenylpyridine ligand with a fluorine substituent. Multilayered OLEDs with the device structure, ITO/2-TNATA/NPB/CBP : 8% Ir(III) complexes/BCP/Liq/Al, were fabricated using these complexes as dopant materials. All the devices exhibited orange-red electroluminescence and their electroluminescent properties were quite sensitive to the structural features of the dopants in the emitting layers. Among these, the maximum luminance ($14700\;cd/m^2$ at 14.0 V) was observed in the device containing Ir(III) complex 1 as the dopant. In addition, its luminous, power and quantum efficiency were 11.7 cd/A, 3.88 lm/W and 9.58% at $20\;mA/cm^2$, respectively. The peak wavelength of electroluminescence was 606 nm with CIE coordinates of (0.61, 0.38) at 12.0 V. The device also showed stable color chromaticity with various voltages.

Photophysical Properties of Highly Efficient Blue-Green Emitting Cationic Iridium (III) Complexes Containing Two 2-Phenylbenzothiazole Ligands and One Diphosphine Ligand

  • Yun, Seong-Jae;Song, Young-Kwang;Kim, Minji;Shin, Jaemin;Jin, Sung-Ho;Kang, Sung Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3199-3204
    • /
    • 2014
  • Two novel phosphorescent heteroleptic cationic Ir(III) complexes, Ir(bt)2(dmpe) (Ir1) and Ir (bt)2(dppe) (Ir2), where bt is 2-phenylbenzothiazole, dmpe is 1,2-bis(dimethylphosphino)ethane, and dppe is 1,2-bis(diphenyl-phosphino) ethane, were designed and synthesized. Their photophysical and electrochemical properties and the X-ray structure of the Ir1 complex were investigated. The prepared Ir(III) complexes exhibited blue-green emissions at 503-538 nm with vibronic fine structures in dichloromethane solution and PMMA film, implying that the lowest excited states are dominated by ligand-based $^3{\pi}-{\pi}^*$ transitions. The ${\pi}$-acceptor ability of the diphosphine ancillary ligand leads to blue-shift emission. The room temperature photoluminescent quantum yields (PLQYs) of Ir1 and Ir2 were 52% and 45%, respectively, in dichloromethane solution. These high PLQYs resulted from steric hindrances by the bulky cationic iridium complexes. The crystal structure of Ir1 was determined by X-ray crystallography, which revealed that central iridium adopted a distorted octahedral structure coordinated with two bt ligands (N^C) and one dmpe ligand (P^P) showing cis C-C and trans N-N dispositions. The bent nature of the dmpe ligand resulted in a relatively wide bite angle of $83.83^{\circ}$ of P-Ir-P.

Er(III)-chelated Prototype Complexes Based on Benzoate and Pentafluorobenzoate Ligands : Synthesis and Key Parameters for Near IR Emission Enhancement

  • Roh, Soo-Gyun;Oh, Jae-Buem;Nah, Min-Kook;Baek, Nam-Seob;Lee, Young-Il;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1503-1507
    • /
    • 2004
  • New synthetic methodology of the saturated and unsaturated Er(III)-chelated prototype complexes based on benzoate and pentafluorobenzoate ligands was developed through ligand-exchange reaction. The saturated 8-coordinated Er(III) complexes exhibit stronger near-IR emission than those of the unsaturated 6-coordinated Er(III) complexes, obtained from the direct photoexcitation of Er ions with 488 nm. Three $H_2O$ molecules coordinated in the unsaturated 6-coordinated complexes seriously quenched the near IR emission by the harmonic vibration relaxation decay of O-H bonds. Also, the stronger emission of the Er(III) complexes was obtained by the indirect photoexcitation of ligands than by the direct photoexcitation of the Er(III) ions, due to the energy transfer between the excited ligand and the erbium ion. Furthermore, the saturated Er(III)-chelated complex with C-F bonds shows much stronger near IR emission than that of the saturated Er(III)-chelated complex with C-H bonds. It is attributed to the influence of C-F bonds on near IR emission.

Study on Electroluminescence of the Phosphorescent Iridium(III) Complex Prepared by Ultrasonic Wave (초음파 합성법을 이용한 이리듐계 인광 물질 합성과 합성된 인광 물질의 전계 발광 특성 분석)

  • Yu, Hong-Jeong;Chung, Won-Keun;Chun, Byung-Hee;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.325-329
    • /
    • 2011
  • $Ir(pmb)_{3}$(Iridium(III)Tri(1-phenyl-3-methylbenzimidazolin-2-ylidene-$C,C^{2'}$ ) was synthesized to develop a deep blue-emitting Ir(III) complex. We suggested the ultrasonic reactor to enhance the poor reaction yield of $Ir(pmb)_{3}$. The ultrasonic wave enhanced the reaction yield of $Ir(pmb)_{3}$ because the ultrasound helped non-soluble reactants disperse efficiently and produced free radial during the reaction. The maximum yield of $Ir(pmb)_{3}$ was 42.5%, which was 4 times higher than conventional method. Organic light emitting devices were fabricated with the synthesized mer-$Ir(pmb)_{3}$ which emitted at 405 nm. A range of host materials with large bandgaps (UGH2, mCP and CBP) were tested for developing a deep blue emitting device. In case of the device with mCP as the host material, it emitted deep blue and performed quite well relative to the other host materials tested.

Tuning Photophysical and Electrochemical Properties of Heteroleptic Cationic Iridium(III) Complexes Containing Substituted 2-Phenylquinoxaline and Biimidazole

  • Sengottuvelan, Nallathambi;Seo, Hoe-Joo;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2309-2314
    • /
    • 2010
  • Design and syntheses of four red phosphorescent heteroleptic cationic iridium(III) complexes containing two substituted phenylquinoxaline (pqx) or benzo[b]thiophen-2-yl-pyridin (btp) main ligands and one 2,2'-biimidazole (H2biim) ancillary ligand are reported: [$(pqx)_2$Ir(biim)]Cl (1), [$(dmpqx)_2$Ir(biim)]Cl (2), [$(dfpqx)_2$Ir(biim)]Cl (3), [$(btp)_2$Ir(biim)]Cl (4). Complex 1 showed a distorted octahedral geometry around the iridium(III) metal ion with cis metallated carbons and trans nitrogen atoms. The absorption, emission and electrochemical properties were systematically evaluated. The complexes exhibited red phosphorescence in the spectral range of 580 to 620 nm with high quantum efficiencies of 0.58 - 0.78 in both solution and solid-state at room temperature depending on the cyclometalated main ligands. The cyclic voltammetry of the complexes (1-3) showed a metal-centered irreversible oxidation in the range of 1.40 to 1.90 V as well as two quasi reversible reduction waves from -1.15 to -1.45 V attributed to the sequential addition of two electrons to the more electron accepting heterocyclic portion of two distinctive cyclometalated main ligands, whereas complex 4 showed a reversible oxidation potential at 1.24 V and irreversible reduction waves at -1.80 V.

Polymer Phosphorescence Device using a New Green Emitting Ir(III) Complex

  • Lee, Chang-Lyoul;Das, Rupasree Ragini;Noh, Yong-Young;Kim, Jang-Joo
    • Journal of Information Display
    • /
    • v.3 no.1
    • /
    • pp.6-10
    • /
    • 2002
  • We have synthesized a new green Ir(III) complex fac-tris-(3-methyl-2-phenyl pyridine)iridium(III) $Ir(mpp)_3$ and fabricated phosphorescent polymer light-emitting device using it as a triplet emissive dopant in PVK. $Ir(mpp)_3$ showed absorption centered at 388 nm corresponding to the $^1MLCT$ transition as .evidenced by its extinction coefficient of the order of $10^3{\cdot}$ From the PL and EL spectra of the $Ir(mpp)_3$ doped PVK film, the emission maximum was observed at 523 nm, due to the radiative decay from the $^3MLCT$ state to the ground state, confirming a complete energy transfer from PVK to $Ir(mpp)_3$. The methyl substitution has probably caused a red shift in the absorption and emission spectrum compared to $Ir(mpp)_3$. The device consisting of a 2 % doped PVK furnished 4.5 % external quantum efficiency at 72 $cd/m^2$ (current density of 0.45 $mA/cm^2$ and drive voltage of 13.9 V) and a peak luminance of 25,000 $cd/m^2$ at 23.4 V (494 $mA/cm^2$). This work demonstrates the impact of the presence of a methyl substituent at the 3-position of the pyridyl ring of 2-phenylpyridine on the photophysical and electroluminescence properties.

Cobalt(III) Complex of Ethylenediamine-N,N'-di-S-${\alpha}$-Propionic Acid (Ethylenediamine-N,N'-di-S-${\alpha}$-Propionic Acid의 코발트(III) 착물)

  • Moo Jin Jun;Yoon Bong Park;Chang Yun Han;Sung Rack Choi
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.247-251
    • /
    • 1985
  • Dichloro cobalt(III) complex of a flexible tetradentate ligand of ethylenediamine-N,N'-di-S-${\alpha}$-propionic acid (eddp) has been prepared via the air-oxidation technique. Only ${\Delta}$-cis isomer has been yielded showing high stereoselectivity of the eddp ligand. Elemental analysis, ir, nmr and electronic absorption spectra have been used to characterize the complex and the absolute configuration of the complex is assigned by means of the nmr spectroscopy.

  • PDF

Cobalt(III) Complexes Containing Ethylenediamine-Triacetate and Aliphatic Diamine (I). The Reaction of Etylenediamine-tetraacetatocobaltate(Ⅲ) with Trimethylenediamine in Aqueous Solution (지방족디아민과 에틸렌디아민-트리아세테이트를 포함하는 코발트 (Ⅲ) 錯物에 관한 연구 (제1보). 수용액 중에서 [Co(EDTA)]- 錯物에 트리메틸렌디아민의 반응)

  • Myung-Ki Doh;Dong-Soo Kim
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.25-29
    • /
    • 1978
  • Cobalt(III) complex containing ethylenediamine-triacetate and trimethylenediamine has been isolated from the reaction of ethylenediamine-tetraacetatocobaltate(III) with trimethylene-diamine in aqueous solution by Dowex 50W-X8, cation exchange resin in $H^+$ form. The ethylenediamine-triacetate($EDTRA^{3-}$) ligand coordinates to the cobalt(III) ion as a quadridentate with a free acetate branch. It has been observed that the complex has trans(O-O) (1) structure via the elemental analysis, UV, IR and NMR data.

  • PDF