• Title/Summary/Keyword: Ionizing irradiation

Search Result 170, Processing Time 0.027 seconds

Investigation of Radiation Effects on the Signal and Noise Characteristics in Digital Radiography (디지털 래디오그라피의 신호 및 잡음 특성에 대한 방사선 영향에 관한 연구)

  • Kim, Ho-Kyung;Cho, Min-Kook;Graeve, Thorsten
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.756-767
    • /
    • 2007
  • For the combination of phosphor screens having various thicknesses and a photodiode array manufactured by complementary metal-oxide-semiconductor (CMOS) process, we report the observation of image-quality degradation under the irradiation of 45-kVp spectrum x rays. The image quality was assessed in terms of dark pixel signal, dynamic range, modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). For the accumulation of the absorbed dose, the radiation-induced increase both in dark signal and noise resulted in the gradual reduction in dynamic range. While the MTF was only slightly affected by the total ionizing dose, the noise power in the case of $Min-R^{TM}$ screen, which is the thinnest one among the considered screens in this study, became larger as the total dose was increased. This is caused by incomplete correction of the dark current fixed-pattern noise. In addition, the increase tendency in NPS was independent of the spatial frequency. For the cascaded model analysis, the additional noise source is from direct absorption of x-ray photons. The change in NPS with respect to the total dose degrades the DQE. However, with carefully updated and applied correction, we can overcome the detrimental effects of increased dark current on NPS and DQE. This study gives an initial motivation that the periodic monitoring of the image-quality degradation is an important issue for the long-term and healthy use of digital x-ray imaging detectors.

Design of Radiation Hardened Shift Register and SEU Measurement and Evaluation using The Proton (내방사선용 Shift Register의 제작 및 양성자를 이용한 SEU 측정 평가)

  • Kang, Geun Hun;Roh, Young Tak;Lee, Hee Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.121-127
    • /
    • 2013
  • Memory devices including SRAM and DRAM are very susceptible to high energy radiation particles in the space. Abnormal operation of the devices is caused by SEE or TID. This paper presents a method to estimate proton SEU cross section representing the susceptibility of the latch circuit that the unit cell of the SRAM and proposes a new latch circuit to mitigate the SEU. 50b shift register was fabricated by using the conventional latch and the proposed latch in $0.35{\mu}m$ process. Irradiation experiment was conducted at KIRAMS by using 43MeV proton beam. It was found that the proposed latch-shift register is not affected by the radiation environment compared to the conventional latch-shift register.

Sterilization Effect of Microbial Strains by using Non-ionizing Radiation (비전리방사선을 이용한 미생물 균주 멸균효과)

  • Jeong, Kyeonghwan;Seo, Jeongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.833-839
    • /
    • 2020
  • Globally, infection prevention and social awareness have been greatly changed by the severe acute respiratory syndrome coronavirus, and as a result, the infection control guidelines and procedures for patients with high exposure to hospital-acquired infection are further strengthened and management and monitoring are more thorough. In order to prevent infection, sterilization should be carried out with the highest priority, and we will find a sterilization method that is low in cost, easy to install, and easy to operate, to present appropriate sterilization effects. In this study, the UV sterilizer was used to contaminate the caries bacteria with an output of 4 W and irradiation time of 60, 150, and 300 sec, and the laser was irradiated with outputs of 0.8 and 1.5 W at wavelengths of 266 and 355 nm, respectively. Ultraviolet sterilizer showed safety in infection prevention at over 150 sec, and laser showed safety in prevention at 1.5 W, 0.8 W, and 266 nm. As a result, the higher the output and the wavelength closer to 253.7 nm, the better the sterilization effect.

Effects of Ionizing Radiation on Sprout Inhibition and Nutritive Value of Potato Tubers (방사선(放射線) 조사(照射)가 감자 괴경(塊莖)의 맹아억제(萌芽抑制) 및 영양가(營養價)에 미치는 영향(影響))

  • Lee, Mie-Soon;Kim, Hong-Lyour
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.29-35
    • /
    • 1972
  • Effects of various dosages of gamma ray ranging from 0 to 16 krad on sprout inhibition and nutritive value of potato tubers were investigated with Irish Cobbler variety. Sprout growth was gradually suppressed with increasing dosage, and completely inhibited with 16 krad treatment. Under this optimum dosage, weight loss of tubers was markedly reduced and tubers kept firm throughout the 2 month storage period. Irradiation had no adverse effects on the cooking quality of potato tubers. Moisture content of stored potato tubers was shown to be in inverse proportion to sprout growth. Tubers treated with 16 krad tended to contain somewhat higher percentage of total carbohydrate than those treated with lower dosages. Significantly larger amounts of ascorbic acid were retained in 8 and 16 krad treatments than in 0 and 2 krad treatments.

  • PDF

Development of Radiation Dosimeter using Commercial p-MOSFET (상용 p-MOSFET을 이용한 방사선 선량계 개발)

  • Lee, Nam-Ho;Choi, Young-Su;Lee, Yong-B.;Youk, Geun-Uck
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • When a metal oxide field effect transistor (MOSFET) is exposed to ionizing radiation, electron/hole pairs are generated in its oxide layer. The slow moving holes of them are trapped in the oxide layer of p-MOSFET and appear as extra charges that change the characteristics of the transistor. The radiation-induced charges directly impact the threshold (turn-on) voltage of the transistor. This paper describes the use of the radiation-induced threshold voltage change as an accumulated radiation dose monitoring sensor. Two kinds of commercial p-type MOSFETS were tested in a Co-60 gamma irradiation facility to see their capabilities as a radiation dosimeter. We found that the transistors showed good linearity in their threshold voltage shift characteristics with radiation dose. The results demonstrate the potential use of commercial p-MOSFETS as inexpensive radiation sensors for the first time.

  • PDF

Evaluation of DNA Damage Using Microwave Dielectric Absorption Spectroscopy

  • Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi;Izumi, Yoshinobu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • Background: Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pretreatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. Materials and Methods: The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. Results and Discussion: The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. Conclusion: We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

Radioprotective Effects of Propolis on the Mouse Testis Exposed to X-ray. (프로폴리스가 X-선에 노출된 마우스 정소에 미치는 방사선 방어 효과)

  • Ji, Tae-Jung;Kim, Jong-Sik;Jeong, Hyung-Jin;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.664-670
    • /
    • 2007
  • The propolis is natural product produced by honeybees and is known to have many biologically useful properties such as anti-microbial, anti-oxidative and anti-tumorigenic activity. However, its radio-protective property has not been well studied. To investigate radio-protective effect of propolis on mouse testis, mice were supplemented with propolis after 5 Gy irradiation. The histological changes of testis were detected by TEM. The results indicate that propolis may protect tissue deformation which is induced by 5 Gy of ionizing radiation. Furthermore, to elucidate the potential molecular mechanisms involved in radio-protective property of propolis, we performed microarray experiments using oligo DNA microarray. We found 65 up-regulated genes and 224 down-regulated genes, whose expression levels were affected more than 2-fold by propolis treatment in mice irradiated at 5 Gy. We confirmed microarray data with reverse transcription-PCR using gene specific primers. The results of RT-PCR are highly correlated with those of microarray. These results may help understanding molecular mechanisms of radioprotective effects by propolis in mouse model.

Inhibition of Apoptosis by Elaeocarpus sylvestris in Mice Following Whole-body Exposure to Ionizing Radiation: Implications for Radioprotectors

  • Park, Eun-Jin;Lee, Nam-Ho;Ahn, Gin-Nae;Baik, Jong-Seok;Lee, Je-Hee;Hwang, Kyu-Kye;Park, Jae-Woo;Jee, Young-Heun
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.718-722
    • /
    • 2008
  • Elaeocarpus sylvestris var. ellipticus (E.S.), which contains 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose (PGG), is reported to have the ability to scavenge oxygen radicals, thereby protecting rat neuronal cells from oxidative damage. The potential of an E.S. extract, which contains a rich PGG, to protect radiosensitive lymphocytes and intestinal crypt cells from radiation injury induced by a single whole-body irradiation (WBI) in vivo was investigated. Our results demonstrated that in immune cells, E.S. treatment decreased the percent of tail DNA, a parameter of DNA damage, compared with levels in untreated, irradiated controls. Furthermore, apoptosis was significantly decreased in lymphocytes and intestinal crypt cells of E.S.-treated mice compared with irradiated controls. These results suggest that the E.S. extract can strengthen the radioresistance of radiosensitive lymphocytes and crypt cells by preventing apoptosis. Therefore, it was concluded that E.S. extract has the radioprotective effects in vivo through an inhibition of apoptosis.

Gamma Irradiation Induced Transcriptional Repression of the Gibberellin Acid Regulating Genes in Arabidopsis Plants

  • Kim, Jin-Baek;Goh, Eun Jeong;Ha, Bo-Keun;Kim, Sang Hoon;Kang, Si-Yong;Jang, Cheol Seong;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.281-287
    • /
    • 2012
  • The model plant, Arabidopsis thaliana is the subject of an international genome research project. Massive doses of ionizing radiation have been shown to induce physiological changes in plants. The wild-type (Ler) Arabidopsis plants were irradiated with 100 Gy and 800 Gy of gamma-ray. Gibberellin (GA) affects developmental processes and responses according to the various environment conditions in diverse plant. The 13 GA isomers were analyzed at vegetative (VE) and reproductive (RE) stages by HPLC. Total GA contents were reduced with the increase in radiation doses at VE and RE stages. Specifically, levels of GA3, GA4, GA12, and GA34 were significantly reduced with the increase of radiation doses. Oligonucleotide microarrays analysis was performed with Arabidopsis plants at different developmental stages and doses of gamma-ray. Through the microarray data, we isolated 41 genes related to GA biosynthesis and signaling transduction. Expression of these genes was also decreased as the reduction of GA contents. Interestingly, in GA signaling related gene expression, gibberellin-responsive protein, putative (At2g18420) was down-regulated at VE and RE stages. Myb21 (At3g27810), Myb24 (At5g40350), and Myb57 (At3g01530) was down-regulated at RE stage. In GA biosynthesis related gene expression, YAP169 (At5g07200) and GA20ox2 (At5g51810) were down-regulated at 100 Gy treatment of VE stage and 800 Gy treatment of RE stage in cytoplasm, respectively. However, exceptively, GA3ox2 (At1g80340) was up-regulated at 100 Gy treatment of RE stage in cytoplasm. In this study, the wild type (Ler) Arabidopsis plants showed differences in response with development stage at the various doses of gamma-rays. GA contents change was reported in gamma irradiated plant.

An Integrated System for Radioluminescence, Thermoluminescence and Optically Stimulated Luminescence Measurements

  • Park, Chang-Young;Park, Young-Kook;Chung, Ki-Soo;Lee, Jong-Duk;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.160-169
    • /
    • 2018
  • Background: This study aims to develop an integrated optical system that can simultaneously or selectively measure the signals obtained from radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL), which are luminescence phenomena of materials stimulated by radioactivity, heat, and light, respectively. The luminescence mechanism of various materials could be investigated using the glow curves of the luminescence materials. Materials and Methods: RL/TL/OSL integrated measuring system was equipped with a X-ray tube (50 kV, $200{\mu}A$) as an ionizing radiation source to irradiate the sample. The sample substrate was used as a heating source and was also designed to optically stimulate the sample material using various light sources, such as high luminous blue light emitting diode (LED) or laser. The system measured the luminescence intensity versus the amount of irradiation/stimulation on the sample for the purpose of measuring RL, TL and OSL sequentially or by selectively combining them. Optical filters were combined to minimize the interference of the stimulation light in the OSL signal. A long-pass filter (420 nm) was used for 470 nm LED, an ultraviolet-pass filter (260-390 nm) was used for detecting the luminescence of the sample by PM tube. Results and Discussion: The reliability of the system was evaluated using the RL/OSL characteristics of $Al_2O_3:C$ and the RL/TL characteristics of LiF:Mg,Cu,Si, which were used as dosimetry materials. The RL/OSL characteristics of $Al_2O_3:C$ showed relatively linear dose-response characteristics. The glow curve of LiF:Mg,Cu,Si also showed typical RL/OSL characteristics. Conclusion: The reliability of the proposed system was verified by sequentially measuring the RL characteristics of radiation as well as the TL and OSL characteristics by concurrent thermal and optical stimulations. In this study, we developed an integrated measurement system that measures the glow curves of RL/TL/OSL using universal USB-DAQs and the control program.