• Title/Summary/Keyword: Ionizing Radiation

Search Result 483, Processing Time 0.035 seconds

Enhanced Sensitivity to Gefitinib after Radiation in Non-Small Cell Lung Cancer Cells

  • Choi, Yun-Jung;Rho, Jin-Kyung;Back, Dae-Hyun;Kim, Hye-Ryoun;Lee, Jae-Cheol;Kim, Cheol-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.4
    • /
    • pp.259-265
    • /
    • 2011
  • Background: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, gefitinib and erlotinib, are effective therapies for non-small cell lung cancer (NSCLC) patients whose tumors harbor somatic mutations in EGFR. The mutations are, however, only found in about 30% of Asian NSCLC patients and all patients ultimately develop resistance to these agents. Ionizing radiation has been shown to induce autophosphorylation of EGFR and activate its downstream signaling pathways. In the present study, we have tested whether the effect of gefitinib treatment can be enhanced after ionizing radiation. Methods: We compared the PC-9 and A549 cell line with its radiation-resistant derivatives after gefitinib treatment with cell proliferation and apoptosis assay. We also analyzed the effect of gefitinib after ionizing radiation in PC-9, A549, and NCI-H460 cells. Cell proliferation was determined by MTT assay and induction of apoptosis was evaluated by flow cytometry. Caspase 3 activation and PARP cleavage were evaluated by western blot analysis. Results: PC-9 cells having mutated EGFR and their radiation-resistant cells showed no significant difference in cell viability. However, radiation-resistant A549 cells were more sensitive to gefitinib than were their parental cells. This was attributable to an increased induction of apoptosis. Gefitinib-induced apoptosis increased significantly after radiation in cells with wild type EGFR including A549 and NCI-H460, but not in PC-9 cells with mutated EGFR. Caspase 3 activation and PARP cleavage accompanied these findings. Conclusion: The data suggest that gefitinib-induced apoptosis could increase after radiation in cells with wild type EGFR, but not in cells with mutated EGFR.

Implementation of Visible monkey into general-purpose Monte Carlo codes: MCNP, PHITS, and Geant4

  • Soo Min Lee;Chansoo Choi;Bangho Shin;Yumi Lee;Ji Won Choi;Bo-Wi Cheon;Chul Hee Min;Beom Sun Chung;Hyun Joon Choi ;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4019-4025
    • /
    • 2023
  • Recently, a new monkey computational phantom, called Visible Monkey, was developed for non-ionizing radiation studies in animal research. In this study, we extended its applications to ionizing radiation studies by implementing the voxel model of the Visible Monkey into three general-purpose Monte Carlo (MC) codes: MCNP6, PHITS, and Geant4. The implementation work for MCNP and PHITS was conducted using the LATTICE, UNIVERSE, and FILL cards. The G4VNestedParameterisation class was used for Geant4. Then, organ dose coefficients (DCs) for idealized photon beams in the antero-posterior direction were calculated using the three codes and compared, showing excellent agreement (differences <3%). Additionally, organ DCs in other directions (postero-anterior, left-lateral, and right-lateral) were calculated and compared with those of the newborn and 1-year-old reference phantoms. Significant differences were observed (e.g., the stomach DC of the monkey was 5-fold greater than that of the 1-year-old phantom at 0.03 MeV) while the differences tended to decrease with increasing energy (mostly <20% at 10 MeV). The results of this study allows conducting MC simulations using the Visible Monkey to estimate organ-level doses, which should be valuable to support/improve monkey experiments involving ionizing radiation exposures.

Proteome Analysis of Escherichia coli after High-dose Radiation

  • Lim, Sangyong;Lee, Misong;Joe, Minho;Song, Hyunpa;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Since proteomics can be employed to compare changes in the expression levels of many proteins under particular genetic and environmental conditions, using mass spectrometry to establish radiation stimulon, we performed two-dimensional gel electrophoresis and identified E. coli proteins whose expressions are affected by high dose of ionizing radiation. After exposure to 3 kGy, it was found that 6 proteins involved in carbon and energy metabolism were reduced. Although 4 of 7 protein spots showing a significant increase in expression level were neither identified nor classified, uridine phosphorylase (Udp), superoxide dismutase (SodB), and thioredoxin-dependent thiol peroxidase (Bcp) were proven to be up-regulated after irradiation. This suggests that E. coli subjected to high doses of radiation (3 kGy) may operate a defense system that is able to detoxify reactive oxygen species and stimulate the salvage pathway of nucleotide synthesis to replenish damaged DNA.

Risk Assessment from Heterogeneous Energy Deposition in Tissue. The Problem of Effects from Low Doses of Ionizing Radiation

  • Le, Feinendegen;J, Booz
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 1992
  • Low doses of ionizing radiation from external or internal sources cause heterogeneous distribution of energy deposition events in the exposed biological system. With the cell being the individual element of the tissue system, the fraction of cells hit, the dose received by the hit, and the biological response of the cell to the dose received eventually determine the effect in tissue. The hit cell may experience detriment, such as change in its DNA leading to a malignant transformation, or it may derive benefit in terms of an adaptive response such as a temporary improvement of DNA repair or temporary prevention of effects from intracellular radicals through enhanced radical detoxification. These responses are protective also to toxic substances that are generated during normal metabolism. Within a multicellular system, the probability of detriment must be weighed against the probability of benefit through adaptive responses with protection against various toxic agents including those produced by normal metabolism. Because irradiation can principally induce both, detriment and adaptive responses, one type of affected cells may not be simply summed up at the expense of cells with other types of effects, in assessing risk to tissue. An inventory of various types of effects in the blood forming system of mammals, even with large ranges of uncertainty, uncovers the possibility of benefit to the system from exposure to low doses of low LET radiation. This experimental approach may complement epidemiological data on individuals exposed to low doses of ionizing radiation and may lead to a more rational appraisal of risk.

  • PDF

Effect of D-(+)-Glucose on the Stability of Polyvinyl Alcohol Fricke Hydrogel Three-Dimensional Dosimeter for Radiotherapy

  • Yang, Yuejiao;Chen, Jie;Yang, Liming;Chen, Bin;Sheng, Zhenmei;Luo, Wenyun;Sui, Guoping;Lu, Xun;Chen, Jianxin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.608-612
    • /
    • 2016
  • D-(+)-glucose (Glc) was added to the original Fricke polyvinyl alcohol-glutaraldehyde-xylenol orange (FPGX) hydrogel dosimeter system to make a more stable FPGX hydrogel three-dimensional dosimeter in this paper. Polyvinyl alcohol was used as a substrate, which was combined with Fricke solution. Various concentrations of Glc were tested with linear relevant fitting for optimal hydrogel production conditions. The effects of various formulations on the stability and sensitivity of dosimeters were evaluated. The results indicated that D-(+)-Glc, as a free radical scavenger, had a great effect on stabilizing the dose response related to absorbency and reducing the auto-oxidization of ferrous ions. A careful doping with Glc could slow down the color change of the dosimeter before and after radiation without any effect on the sensitivity of the dosimeter.

Evaluation of exposure to ionizing radiation of medical staff performing procedures with glucose labeled with radioactive fluorine - 18F-FDG

  • Michal Biegala;Marcin Brodecki;Teresa Jakubowska;Joanna Domienik-Andrzejewska
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.335-339
    • /
    • 2024
  • Employees of nuclear medicine facilities performing medical procedures with the use of open radioactive sources require continuous detailed control of exposure to ionizing radiation. Thermoluminescent (TL) detectors placed in dosimeters: for the whole body, for lenses, ring and wrist dosimeters were used to assess exposure. The highest whole-body exposure of (1.70 ± 1.09) µSv/GBq was recorded in nurses administering radiopharmaceutical to patients. The highest exposure to lenses and fingers was recorded for employees of the quality control zone and it was (8.08 ± 2.84) µSv/GBq and a maximum of (1261.46 ± 338.93) µSv/GBq, respectively. Workers in the production zone received the highest doses on their hands, i.e. (175.67 ± 13.25) µSv/GBq. The measurements performed showed that the analyzed workers may be classified as exposure category A. Wrist dosimeters are not recommended for use in isotope laboratories due to underestimation of ionizing radiation doses. Appropriately selected shields, which significantly reduce the dose received by employees, must be used in isotope laboratories. Periodic measurements confirmed that the appropriate optimization of exposure reduces the radiation doses received by employees.

Sensitivity Analysis of the Structural Characteristics of the MOS Capacitors for Sensing the Ionizing Radiation Effects (전리방사선 센서용 MOS Capacitors의 구조적 변화에 따른 감도 특성 분석)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Lee, Hyun-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1181-1182
    • /
    • 2008
  • The study presents the results of the analysis on the structural characteristics of MOS capacitor for sensing the ionizing radiation effect. Increasing the thickness of MOS capacitor's oxide layer enhanced the sensitivity of MOS capacitor under irradiation condition, but the sensitivity of irradiated MOS capacitor is uninfluenced by the area of MOS capacitor.

  • PDF

INDUCTION OF MITOCHONDRIAL DNA DELETION BY IONIZING RADIATION IN HUMAN LUNG FIBROBLAST IMR-90 CELLS

  • Eom, Hyeon-Soo;Jung, U-Hee;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2009
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with $^{137}Cs$ $\gamma$-rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and $H_2O_2$-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and $H_2O_2$-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.

Epidemiology of Low-Dose Ionizing Radiation Exposure and Health Effects (저선량 방사선 노출과 건강 영향에 대한 역학적 고찰)

  • Won Jin Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Low-dose radiation exposure has received considerable attention because it reflects the general public's type and level of exposure. Still, controversy remains due to the relatively unclear results and uncertainty in risk estimation compared to high-dose radiation. However, recent epidemiological studies report direct evidence of health effects for various types of low-dose radiation exposure. In particular, international nuclear workers' studies, CT exposure studies, and children's cancer studies on natural radiation showed significantly increased cancer risk among the study populations despite their low-dose radiation exposure. These studies showed similar results even when the cumulative radiation dose was limited to an exposure group of less than 100 mGy, demonstrating that the observed excess risk was not affected by high exposure. A linear dose-response relationship between radiation exposure and cancer incidence has been observed, even at the low-dose interval. These recent epidemiological studies include relatively large populations, and findings are broadly consistent with previous studies on Japanese atomic bomb survivors. However, the health effects of low-dose radiation are assumed to be small compared to the risks that may arise from other lifestyle factors; therefore, the benefits of radiation use should be considered at the individual level through a balanced interpretation. Further low-dose radiation studies are essential to accurately determining the benefits and risks of radiation.