• Title/Summary/Keyword: Ionization rate

Search Result 265, Processing Time 0.031 seconds

Pulp Bleaching Effect and Ionization Rate of Chlorine Dioxide by Additives and Various pH Conditions(I)-Ionization of ClO$_2$ and Formation of Chlorate in Pulp Bleaching- (pH와 첨가제에 의한 이산화염소의 분해율 및 펄프표백 효과(1)-표백 중에서 이산화염소의 분해와 Chlorate의 생성-)

  • ;Li Jun Wang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 1998
  • Elementally Chlorine Free (ECF) bleaching will be superior than Totally Chlorine free (TCF) bleaching, not only because they have no significant difference in effluent toxicity, but also those pulps bleached by ECF have higher brightness, strength, yield, etc., over those by TCF. With this belief, this paper focused on the chemistry of chlorine dioxide decomposition and ionization, both in water solution and in pulp slurry. Special attention was paid to chlorate ion because there have been controversies as how it is formed and what its behavior to the end pH of pulp bleaching is. As a result, during ionization of chlorine dioxide with water, both chlorate and chlorite were found to increase with increasing pH, but during ionization with pulp, chlorite was found to increase with end pH while chlorate decreased with increasing end pH. In the case of ionization with water, the disproportion equation $2CIO_2 + OH^{-} \lightarrow H_2O + CIO_3^{-} + CIO_2^{-}$ was thought to become the main reaction with the increasing pH, while in the case of ionization with pulp, the reaction $HCIO + CIO_2^{-}\lightarow H^{+} + Cl^{-} + CIO_3^{-}$ was the main reaction contributing to the formation of chlorate. Based on this above opinion, the contrary results of chlorine dioxide ionization from different researchers were discussed and explained.

  • PDF

A Study on the Temperature dependent Impact ionization for GaAs using the Full Band Monte Carlo Method (풀밴드 몬데카를로 방법을 이용한 GaAs 임팩트이온화의 온도 의존성에 관한 연구)

  • 고석웅;유창관;정학기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.697-703
    • /
    • 2000
  • As device dimensions are lastly scaled down, impact ionization(I.I.) events are very important to analyze hot carrier transport in high energy region, and the exact model of impact ionization is demanded on device simulation. We calculate full band model by empirical pseudopotential method and the impact ionization rate is derived from modified Keldysh formula. We calculate impact ionization coefficients by full band Monte Carlo simulator to investigate temperature dependent characteristics of impact ionization for GaAs as a function of field. Resultly impact ionization coefficients are in good agreement with experimental values at look. We how energy is increasing along increasing the field, while energy is decreasing along increasing the temperature since the phonon scattering rates for emission mode are very high at high temperature. The logarithmic fitting function of impact ionization coefficients is described as a second orders function of temperature and field. The residuals of the logarithmic fitting function are mostly within 5%. We Dow, therefore, the logarithm of impact ionization coefficients has quadratic dependence on temperature, and we can save time of calculating the temperature dependent impact ionization coefncients as a function of field.

  • PDF

A Study on the Temperature- and Field-Dependent Impact ionization for GaAs (GaAs임팩트이온화의 온도와 전계의존특성에 대한 연구)

  • 고석웅;유창관;김재홍;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.460-464
    • /
    • 2000
  • As device dimensions are lastly scaled down, impact ionization(I.I.) events are very important to analyze hot carrier transport in high energy region, and the exact model of impact ionization is demanded on device simulation. We calculate full band model by empirical pseudopotential method and the impact ionization rate is derived from modified Keldysh formula. We calculate impact ionization coefficients by full band Monte Carlo simulator to investigate temperature-and field-dependent characteristics of impact ionization for GaAs. Resultly impact ionization coefficients are In good agreement with experimental values at 300k. We know energy is increasing along increasing the field. while energy is decreasing along increasing the temperature since the phonon scattering rates for omission mode are very high at high temperature. The logarithmic fitting function of impact ionization coefficients is described as a second orders function for temperature and field. The residuals of the logarithmic fitting function are mostly within 5%. We know, therefore, logarithm of impact ionization coefficients has quadratic dependence on temperature and field, and we can save time of calculating the temperature- and field-dependent impact ionization coefficients.

  • PDF

Interaction of pharmaceuticals with betacyclodextrin III Influence of Betacyclodextrin on Phenobarbital Hydrolysis

  • Min, Shin-Hong
    • YAKHAK HOEJI
    • /
    • v.16 no.4
    • /
    • pp.155-161
    • /
    • 1972
  • The hydrolysis of phenobarbital is decelerated in alkaline solution by betacyclodextrin. The betacyclodextrin inhibits the degradation of phenobarbital up to 1.5 fold in the system containing 1% betacyclodextrin. The degradation mechanism in systems containing betacyclodextrin is the same that in system without complexing agent, although the rate constants are different. The pH dependence of the hydrolysis rate deceleration is compared with the ionization percent of betacyclodextrin. The results indicate that a direct relationship does not exist between the ionization of betacyclodextrin. It seems reasonable therefore that the phenobarbital undergoes a stable complex with betacyclodextrin and complex formation would provide a better shield for the phenobarbital from hydroxyl ion attack.

  • PDF

Investigation of New Ionized Cluster Beam Source (새로운 이온화된 클라스터 빔원의 제작과 특성 조사)

  • ;;;;S.G.Kondrnine;E.A. Krallkina
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.251-257
    • /
    • 1996
  • The present paper represents the results of development and first experimental tests of a new ionized cluster beam (ICB) source. The novelty of ICB source lies in the fact that the crucible and ionization parts are spaced in one cylindrical shell but are not divided in an electric circuit. The ICB source adapts permanent magnets to increase the ionization efficiency. The maximum obtained $Cu^+$ ion current denisity is $1.5{\mu}A/\textrm{cm}^2$, therewith the ionization rate amounts 3% under deposition rate is 0.2$\AA$/s and the acceleration voltage is 4 kV, the $Cu^+$ ion beam uniformity is better than 95%.

  • PDF

Efficiency of the Hybrid-type Air Purifier on Reducing Physical and Biological Aerosol (복합식 공기청정기의 물리적 및 생물학적 입자상 물질의 제거 효과)

  • Kim, Ki-Youn;Kim, Chi-Nyon;Kim, Yoon-Shin;Roh, Young-Man;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.478-484
    • /
    • 2006
  • There was no significant difference in the CADR (Clean Air Delivery Rate) between physical aerosols, NaCl and smoke, and biological aerosols, airborne MS2 virus and P. fluorescens, which implicate that the hybrid-type of air purifier, applying the unipolar ion emission and the radiant catalytic ionization, imposed identical reduction effect on both physical aerosol and bioaerosol. Ventilation decreases the efficiency of air cleaning by unipolar ionization because high ventilation diminishes the particle concentration reduction effect. The particle removal efficiency decreases with increase in the chamber volume because of the augmented ion diffusion and higher ion wall loss rate. Particle size affects the efficiency of air ionization. The efficiency is high for particles with very small diameter because reduction of charge increases with particle size. If there is no increasing supply of ions, the efficiency of air cleaning by unipolar ionization increases with respect to initial concentration of particles because of the large space charge effect at high particle concentration and amplified electric field.

Basic Study on the Improvement of Material Removal Efficiency of Sapphire CMP Using Electrolytic Ionization and Ultraviolet Light (전해 이온화와 자외선광을 이용한 사파이어 화학기계적 연마의 재료제거 효율 향상에 관한 기초 연구)

  • Park, Seonghyun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.208-212
    • /
    • 2021
  • Chemical mechanical polishing (CMP) is a key technology used for the global planarization of thin films in semiconductor production and smoothing the surface of substrate materials. CMP is a type of hybrid process using a material removal mechanism that forms a chemically reacted layer on the surface of a material owing to chemical elements included in a slurry and mechanically removes the chemically reacted layer using abrasive particles. Sapphire is known as a material that requires considerable time to remove materials through CMP owing to its high hardness and chemical stability. This study introduces a technology using electrolytic ionization and ultraviolet (UV) light in sapphire CMP and compares it with the existing CMP method from the perspective of the material removal rate (MRR). The technology proposed in the study experimentally confirms that the MRR of sapphire CMP can be increased by approximately 29.9, which is judged as a result of the generation of hydroxyl radicals (·OH) in the slurry. In the future, studies from various perspectives, such as the material removal mechanism and surface chemical reaction analysis of CMP technology using electrolytic ionization and UV, are required, and a tribological approach is also required to understand the mechanical removal of chemically reacted layers.

Numerical Analysis of Optical Damage in Dielectrics Irradiated by Ultra-Short Pulsed Lasers (극초단 펄스 레이저에 의한 절연체의 광학 손상 해석)

  • Lee, Seong-Hyuk;Kang, Kwang-Gu;Lee, Joon-Sik;Choi, Young-Ki;Park, Seung-Ho;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1213-1218
    • /
    • 2004
  • The present article reports extensive numerical results on the non-local characteristics of ultra-short pulsed laser-induced breakdowns of fused silica ($SiO_{2}$) by using the multivariate Fokker-Planck equation. The nonlocal type of multivariate Fokker-Planck equation is modeled on the basis of the Boltzmann transport formalism to describe the ultra-short pulsed laser-induced damage phenomena in the energy-position space, together with avalanche ionization, three-body recombination, and multiphoton ionization. Effects of electron avalanche, recombination, and multiphoton ionization on the electronic transport are examined. From the results, it is observed that the recombination becomes prominent and contributes to reduce substantially the rate of increase in electron number density when the electron density exceeds a certain threshold. With very intense laser irradiation, a strong absorption of laser energy takes place and an initially transparent solid is converted to a metallic state, well known as laser-induced breakdown. It is also found that full ionization is provided at intensities above threshold, all further laser energy is deposited within a thin skin depth.

  • PDF

Ionization of Hydrogen in the Solar Atmosphere

  • Chae, Jongchul
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.83-92
    • /
    • 2021
  • The ionization degree of hydrogen is crucial in the physics of the plasma in the solar chromosphere. It specifically limits the range of plasma temperatures that can be determined from the Hα line. Given that the chromosphere greatly deviates from the local thermodynamic equilibrium (LTE) condition, precise determinations of hydrogen ionization require the solving of the full set of non-LTE radiative transfer equations throughout the atmosphere, which is usually a formidable task. In many cases, it is still necessary to obtain a quick estimate of hydrogen ionization without having to solve for the non-LTE radiative transfer. Here, we present a simple method to meet this need. We adopt the assumption that the photoionizing radiation field changes little over time, even if physical conditions change locally. With this assumption, the photoionization rate can be obtained from a published atmosphere model and can be used to determine the degree of hydrogen ionization when the temperature and electron density are specified. The application of our method indicates that in the chromospheric environment, plasma features contain more than 10% neutral hydrogen at temperatures lower than 17,000 K but less than 1% neutral hydrogen at temperatures higher than 23,000 K, implying that the hydrogen temperature determined from the Hα line is physically plausible if it is lower than 20,000 K, but may not be real, if it is higher than 25,000 K. We conclude that our method can be readily exploited to obtain a quick estimate of hydrogen ionization in plasma features in the solar chromosphere.

The Temperature- and Field-dependent Impact ionization Coefficient for Silicon using Monte Carlo Simulation (Monte Carlo 시뮬레이션을 이용한 Si 임팩트이온화계수의 온도 및 전계 특성)

  • 유창관;고석웅;김재홍;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.451-454
    • /
    • 2000
  • The impact ionization(I.I.) is necessary to analyze carrier transport properties under the influence of high electric field. The full band I-k relation and Fermi's golden rule are used for the calculation of impact ionization rate. We have investigated the temperature- and field-dependent impact ionization coefficient for silicon using full band Monte Carlo simulation. The impact ionization coefficients calculated by our impact ionization model are agreed with experimental data at look. We know that impact ionization coefficients and electron energies are decreasing along increasing temperature due to increase of phonon scattering, especially by emission. The logarithm of impact ionization coefficients are fitted to linear function for temperature and field. The residuals of linear function are within the error bound of 5%. We know logarithmic impact ionization coefficients are linearly dependent on temperature and field.

  • PDF