• Title/Summary/Keyword: Ionization energy

Search Result 392, Processing Time 0.036 seconds

The anisotropic of threshold energy of impact ionization for energy band structure on GaAs (GaAs 에너지밴드구조에 따른 임팩트이온화의 문턱에너지 이방성)

  • 정학기;고석웅;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.389-393
    • /
    • 1999
  • The exact model of impact ionization events in which has influence on device efficiency, is to be necessary element for device simulation. Recently, a modified Keldysh formula with two set of power exponent of 7.8 and 5.6 is used to simulate carrier transport. This model is, however, not suitable as impact ionization model in low energy range since this ignore direction dependent properties of impact ionization. The impact ionization rate is highly anisotropic at low energy, while it becomes isotropic at higher energy range. Note that impact ionization events frequently occur in high energy range. For calculating impart ionization rate, we use full energy band structure derived from Fermi's golden rule and empirical pseudopotential method. We compare with calculated and experimental value, and investigate direction dependent conduction energy band structure along the direction of <100>, <110> and <111>. We know that the threshold energy of impact ionization is anisotropic and impact ionization rate is very deviated from modified Keldish formula, in relatively low energy range.

  • PDF

Measurement of Ion Energy Distribution using QMS & Ionization Enhancement by usign Magnetic Field in Triod BARE (자장을 이용한 이온화율 증대형 삼극형 BARE에서 이온화율의 증대경향과 QMS를 이용한 이온의 에너지 분포 측정)

  • 김익현;주정훈;한봉희
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.3
    • /
    • pp.119-124
    • /
    • 1991
  • Recently, the trend of research in hard coating is concentrate on developing the process of ionization rate under low operating pressure, to get the thin film with high adhesion and dense microstructures. In this study ionization rate enhancement type PVD process using permanent magnet is developed, which enhances the ionization rate by confining the plasma suppressing the wall loss of electron. By the result to investigate the characteristic of glow discharge, the ionization rate of this process is enhanced about twice as high as that of triod BARE process (about 26%), and more dense TiN microstructures are obtained in this process. Cylindrical ion energy analyzer is made and attached in front of a quadrupole mass filter for the analysis of the energy distribution of reactive gas and activated gas ions from the plasma zone. To analyze the operation mechanism of ion energy analyzer, computer simulation is performed by calculation the electric field environment using finite element method. By these analyses of ion energy distribution of outcoming ions from the plasma zone, it is found that magnetic field enhances ion kinetic energy as well as ionization rate. The other results of this study is that the foundation of feed-back system is constructed, which automatically control the partial pressure of reactive gas. In can be possible by recording the data of mass spectrum and ion energy analysis using A-D converter.

  • PDF

A LONG-TERM FIELD TEST OF A LARGE VOLUME IONIZATION CHAMBER BASED AREA RADIATION MONITORING SYSTEM DEVELOPED AT KAERI

  • Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Kim, Jung-Bok;Kim, Young-Kyun;Jin, Hyung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2009
  • An Area Radiation Monitoring System (ARMS) ionization chamber, which had an 11.8 L active volume, was fabricated and performance-tested at KAERI. Low leakage currents, linearities at low and high dose rates were achieved from performance tests. The correlation coefficients between the ionization currents and the dose rates are 1 at high dose rate and 0.99 at low dose rate. In this study, an integration-type ARMS ionization chamber was tested over a year for an evaluation of its long-term stability at a radioisotope (RI) repository of the Young-gwang nuclear power plant. The standard deviation of dose rate of 1 day data and over a 100-days mean value were 6.2 $\mu$R/h and 2.9 $\mu$R/h, respectively. The fabricated ARMS ionization chamber showed stable performance from the results of the long-term tests. Design and performance characteristics of the fabricated ionization chamber for the ARMS from performance-tests are also addressed.

Impact Ionization Characteristics Near the Drain of Silicon MOSFET's at 77 and 300 K Using Monte Carlo Method (몬데 칼로 방법을 이용한 실리콘 MOSFET의 드레인영역에서 77 K와 300 K의 Impact Ionization 특성)

  • Rhee, Jun-Koo;Park, Young-June;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.131-135
    • /
    • 1989
  • Hot electron simulation of silicon using Monte Carlo method was carried out to investigate impact ionization characteristics near the drain of MOSFET's at 77 and 300K. We successfully characterized drift velocity and impact ionization at 77 and 300K employing a simplified energy band structure and phonon scattering mechanisms. Woods' soft energy threshold model was introduced to the Monte Carlo simulation of impact ionization, and good agreement with reported experimental results was resulted by employing threshold energy of 1.7 eV. It is suggested that the choice of the critical angle between specular reflection and diffusive scattering of surface roughness scattering may be important in determining the impact ionization charateristics of Monte Carlo simulation near the drain of MOSFET's.

  • PDF

Impact ionization for GaAs using full band monte carlo simulation (Full 밴드 몬테칼로 시뮬레이션을 이용한 GaAs 임팩트이온화에 관한 연구)

  • 정학기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.112-119
    • /
    • 1996
  • Impact ionization model in GaAs has been presented by modified keldysh formula with two sets of power exponent of 7.8 and 5.6 in study. Impact ionization rate is derived from fermil's golden rule and ful lenergy band stucture based on empirical pseudopotential method. Impact ionization rates show anisotropic property in low energy region (<3eV), but isotropic in high energy region (3>eV). Full band monte calo simulator is coded for investigating the validity of the GaAs impact ionization model, and validity is checked by comparing impact ionization coefficients with experimental values and ones in anisotropic model. Valley transitions to energy alteration are explained by investigating electron motion in brillouin zone for full band model to electric field variation.

  • PDF

The Temperature Dependent Properties for Impact ionization of CaAs (CaAs의 임팩트이온화에 대한 온도의존특성)

  • 고석웅;유창관;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.520-524
    • /
    • 1999
  • The Impact ionization rate is highly anisotropic at low electron energy, while it becomes isotropic at higher energy range in which impact ionization events frequently accur. In this study, full energy band structure obtained by pseudopotential method and Fermi's golden rule is used to calculate impact ionization rate. The calculated impact ionization rate is well fitted to a modified Keldysh formular at 300K and 77K. Full band Monte Carlo simulator is made to investigate the validity of the GaAs impact ionization coefficients at 300K and 77K. Impart ionization process is isotropic under the condition of steady state since anisotrophy appears during very short time at look. Impart ionization coefficients is nearly constant and is anisotropic in electric field applied along the <110> direction at 77K.

  • PDF

Spectroscopic Investigation of cis-2,4-Difluorophenol Cation by Mass-analyzed Threshold Ionization Spectroscopy

  • Shivatare, Vidya;Tzeng, Wen Bih
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.815-820
    • /
    • 2014
  • We applied the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques to record the vibronic and cation spectra of 2,4-difluorophenol. As supported by our theoretical calculations, only the cis form of 2,4-difluorophenol involves in the two-photon photoexcitation and pulsed field ionization processes. The band origin of the $S_1{\leftarrow}S_0$ electronic transition of cis-2,4-difluorophenol appears at 35 647 ${\pm}2cm^{-1}$ and the adiabatic ionization energy is determined to be 70 $030{\pm}5cm^{-1}$, respectively. Most of the observed active vibrations in the electronically excited $S_1$ and cationic ground $D_0$ states mainly involve in-plane ring deformation vibrations. Comparing these data of cis-2,4-difluorophenol with those of phenol, cis-2-fluorophenol, and 4-fluorophenol, we found that there is an additivity rule associated with the energy shift resulting from the additional fluorine substitution.

Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

  • Song, Kyu-Seok;Cha, Hyung-Ki;Kim, Duk-Hyeon;Min, Ki-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.101-105
    • /
    • 2004
  • The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ~1,500 for the ytterbium.

Evaluation of the potential reduction and energy dispersion caused by ionization phenomena at the submerged ground rod (수중에 잠긴 접지전극주변에서 이온화에 의한 전위저감 및 에너지 방출의 평가)

  • An, Sang-Duk;Choi, Jong-Hyuk;Park, Geon-Hun;Yang, Soon-Man;Lee, Bok-Hee;Ahn, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.337-340
    • /
    • 2008
  • When high surge voltage invaded into the ground rod contacted with ground water, the ionization phenomena are happened in the water. Although some researchers have surveyed the ionization phenomena in soil, they have just analyzed the variation of the ground resistance. The most important role of the ground rod is to elect human beings from potential rise and to dissipate energy to the earth safely. In this wort we presented the method evaluating the potential reduction and energy dispersion. Also we analyzed theses factors as a function of charging voltages at the water resistivity of $50\;{\Omega}{\cdot}m$ using the Matlab Program. As a result the ground rod potential was reduced to 38 kV by ionization just below breakdown voltage. The energy more than half of the total injected energy was dispersed through the grounding electrode caused due to ionization.

  • PDF

A Study on the Temperature dependent Impact ionization for GaAs using the Full Band Monte Carlo Method (풀밴드 몬데카를로 방법을 이용한 GaAs 임팩트이온화의 온도 의존성에 관한 연구)

  • 고석웅;유창관;정학기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.697-703
    • /
    • 2000
  • As device dimensions are lastly scaled down, impact ionization(I.I.) events are very important to analyze hot carrier transport in high energy region, and the exact model of impact ionization is demanded on device simulation. We calculate full band model by empirical pseudopotential method and the impact ionization rate is derived from modified Keldysh formula. We calculate impact ionization coefficients by full band Monte Carlo simulator to investigate temperature dependent characteristics of impact ionization for GaAs as a function of field. Resultly impact ionization coefficients are in good agreement with experimental values at look. We how energy is increasing along increasing the field, while energy is decreasing along increasing the temperature since the phonon scattering rates for emission mode are very high at high temperature. The logarithmic fitting function of impact ionization coefficients is described as a second orders function of temperature and field. The residuals of the logarithmic fitting function are mostly within 5%. We Dow, therefore, the logarithm of impact ionization coefficients has quadratic dependence on temperature, and we can save time of calculating the temperature dependent impact ionization coefncients as a function of field.

  • PDF